Design and analysis of neural networks for systems optimization
Autor(a) principal: | |
---|---|
Data de Publicação: | 1999 |
Outros Autores: | , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/219223 |
Resumo: | Artificial neural networks are dynamic systems consisting of highly interconnected and parallel nonlinear processing elements that are shown to be extremely effective in computation. This paper presents an architecture of artificial neural networks that can be used to solve several classes of optimization problems. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. Among the problems that can be treated by the proposed approach include combinatorial optimization problems and dynamic programming problems. |
id |
UNSP_397de8b16f5475249f864a5d7249dc77 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/219223 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Design and analysis of neural networks for systems optimizationArtificial neural networks are dynamic systems consisting of highly interconnected and parallel nonlinear processing elements that are shown to be extremely effective in computation. This paper presents an architecture of artificial neural networks that can be used to solve several classes of optimization problems. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. Among the problems that can be treated by the proposed approach include combinatorial optimization problems and dynamic programming problems.State Univ of Sao Paulo, BauruState Univ of Sao Pauloda Silva, Ivan N.Bordon, Mario E.de Souza, Andre N.2022-04-28T18:54:27Z2022-04-28T18:54:27Z1999-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject684-689Proceedings of the International Joint Conference on Neural Networks, v. 1, p. 684-689.http://hdl.handle.net/11449/2192232-s2.0-0033333587Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings of the International Joint Conference on Neural Networksinfo:eu-repo/semantics/openAccess2022-04-28T18:54:27Zoai:repositorio.unesp.br:11449/219223Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T13:42:07.701185Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Design and analysis of neural networks for systems optimization |
title |
Design and analysis of neural networks for systems optimization |
spellingShingle |
Design and analysis of neural networks for systems optimization da Silva, Ivan N. |
title_short |
Design and analysis of neural networks for systems optimization |
title_full |
Design and analysis of neural networks for systems optimization |
title_fullStr |
Design and analysis of neural networks for systems optimization |
title_full_unstemmed |
Design and analysis of neural networks for systems optimization |
title_sort |
Design and analysis of neural networks for systems optimization |
author |
da Silva, Ivan N. |
author_facet |
da Silva, Ivan N. Bordon, Mario E. de Souza, Andre N. |
author_role |
author |
author2 |
Bordon, Mario E. de Souza, Andre N. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
State Univ of Sao Paulo |
dc.contributor.author.fl_str_mv |
da Silva, Ivan N. Bordon, Mario E. de Souza, Andre N. |
description |
Artificial neural networks are dynamic systems consisting of highly interconnected and parallel nonlinear processing elements that are shown to be extremely effective in computation. This paper presents an architecture of artificial neural networks that can be used to solve several classes of optimization problems. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. Among the problems that can be treated by the proposed approach include combinatorial optimization problems and dynamic programming problems. |
publishDate |
1999 |
dc.date.none.fl_str_mv |
1999-12-01 2022-04-28T18:54:27Z 2022-04-28T18:54:27Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Proceedings of the International Joint Conference on Neural Networks, v. 1, p. 684-689. http://hdl.handle.net/11449/219223 2-s2.0-0033333587 |
identifier_str_mv |
Proceedings of the International Joint Conference on Neural Networks, v. 1, p. 684-689. 2-s2.0-0033333587 |
url |
http://hdl.handle.net/11449/219223 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Proceedings of the International Joint Conference on Neural Networks |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
684-689 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128267969888256 |