Characterization of the temperature, load and damage effects using piezoelectric transducer patches based on fuzzy clustering

Detalhes bibliográficos
Autor(a) principal: Lopes, V. [UNESP]
Data de Publicação: 2011
Outros Autores: Gonsalez, C. G. [UNESP], Da Silva, S., Roy, S., Kode, K., Sunor, F.
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/73036
Resumo: Structural Health Monitoring (SHM) denotes a system with the ability to detect and interpret adverse changes in a structure. One of the critical challenges for practical implementation of SHM system is the ability to detect damage under changing environmental conditions. This paper aims to characterize the temperature, load and damage effects in the sensor measurements obtained with piezoelectric transducer (PZT) patches. Data sets are collected on thin aluminum specimens under different environmental conditions and artificially induced damage states. The fuzzy clustering algorithm is used to organize the sensor measurements into a set of clusters, which can attribute the variation in sensor data due to temperature, load or any induced damage.
id UNSP_3a0b4c134acaddbf2b59f1a32bb725d6
oai_identifier_str oai:repositorio.unesp.br:11449/73036
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Characterization of the temperature, load and damage effects using piezoelectric transducer patches based on fuzzy clusteringCritical challengesDamage effectsData setsEnvironmental conditionsInduced damagePractical implementationPZTSensor dataSensor measurementsAluminumFuzzy clusteringIntelligent structuresMaintenancePiezoelectric transducersSensorsStructural Health Monitoring (SHM) denotes a system with the ability to detect and interpret adverse changes in a structure. One of the critical challenges for practical implementation of SHM system is the ability to detect damage under changing environmental conditions. This paper aims to characterize the temperature, load and damage effects in the sensor measurements obtained with piezoelectric transducer (PZT) patches. Data sets are collected on thin aluminum specimens under different environmental conditions and artificially induced damage states. The fuzzy clustering algorithm is used to organize the sensor measurements into a set of clusters, which can attribute the variation in sensor data due to temperature, load or any induced damage.Univ Estadual Paulista UNESP, Ilha Solteira, SPWestern Paraná State University (UNIOESTE) Centro de Engenharias e Ciências Exatas (CECE), Foz do Iguaçu, PRDepartment of Aeronautics and Astronautics Stanford UniversityDepartment of Computational and Mathematical Engineering Stanford UniversityUniv Estadual Paulista UNESP, Ilha Solteira, SPUniversidade Estadual Paulista (Unesp)Centro de Engenharias e Ciências Exatas (CECE)Stanford UniversityLopes, V. [UNESP]Gonsalez, C. G. [UNESP]Da Silva, S.Roy, S.Kode, K.Sunor, F.2014-05-27T11:26:19Z2014-05-27T11:26:19Z2011-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject1196-1205Structural Health Monitoring 2011: Condition-Based Maintenance and Intelligent Structures - Proceedings of the 8th International Workshop on Structural Health Monitoring, v. 1, p. 1196-1205.http://hdl.handle.net/11449/73036WOS:0002976341001452-s2.0-84866648665Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengStructural Health Monitoring 2011: Condition-Based Maintenance and Intelligent Structures - Proceedings of the 8th International Workshop on Structural Health Monitoringinfo:eu-repo/semantics/openAccess2021-10-23T21:37:54Zoai:repositorio.unesp.br:11449/73036Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:31:40.889913Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Characterization of the temperature, load and damage effects using piezoelectric transducer patches based on fuzzy clustering
title Characterization of the temperature, load and damage effects using piezoelectric transducer patches based on fuzzy clustering
spellingShingle Characterization of the temperature, load and damage effects using piezoelectric transducer patches based on fuzzy clustering
Lopes, V. [UNESP]
Critical challenges
Damage effects
Data sets
Environmental conditions
Induced damage
Practical implementation
PZT
Sensor data
Sensor measurements
Aluminum
Fuzzy clustering
Intelligent structures
Maintenance
Piezoelectric transducers
Sensors
title_short Characterization of the temperature, load and damage effects using piezoelectric transducer patches based on fuzzy clustering
title_full Characterization of the temperature, load and damage effects using piezoelectric transducer patches based on fuzzy clustering
title_fullStr Characterization of the temperature, load and damage effects using piezoelectric transducer patches based on fuzzy clustering
title_full_unstemmed Characterization of the temperature, load and damage effects using piezoelectric transducer patches based on fuzzy clustering
title_sort Characterization of the temperature, load and damage effects using piezoelectric transducer patches based on fuzzy clustering
author Lopes, V. [UNESP]
author_facet Lopes, V. [UNESP]
Gonsalez, C. G. [UNESP]
Da Silva, S.
Roy, S.
Kode, K.
Sunor, F.
author_role author
author2 Gonsalez, C. G. [UNESP]
Da Silva, S.
Roy, S.
Kode, K.
Sunor, F.
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Centro de Engenharias e Ciências Exatas (CECE)
Stanford University
dc.contributor.author.fl_str_mv Lopes, V. [UNESP]
Gonsalez, C. G. [UNESP]
Da Silva, S.
Roy, S.
Kode, K.
Sunor, F.
dc.subject.por.fl_str_mv Critical challenges
Damage effects
Data sets
Environmental conditions
Induced damage
Practical implementation
PZT
Sensor data
Sensor measurements
Aluminum
Fuzzy clustering
Intelligent structures
Maintenance
Piezoelectric transducers
Sensors
topic Critical challenges
Damage effects
Data sets
Environmental conditions
Induced damage
Practical implementation
PZT
Sensor data
Sensor measurements
Aluminum
Fuzzy clustering
Intelligent structures
Maintenance
Piezoelectric transducers
Sensors
description Structural Health Monitoring (SHM) denotes a system with the ability to detect and interpret adverse changes in a structure. One of the critical challenges for practical implementation of SHM system is the ability to detect damage under changing environmental conditions. This paper aims to characterize the temperature, load and damage effects in the sensor measurements obtained with piezoelectric transducer (PZT) patches. Data sets are collected on thin aluminum specimens under different environmental conditions and artificially induced damage states. The fuzzy clustering algorithm is used to organize the sensor measurements into a set of clusters, which can attribute the variation in sensor data due to temperature, load or any induced damage.
publishDate 2011
dc.date.none.fl_str_mv 2011-12-01
2014-05-27T11:26:19Z
2014-05-27T11:26:19Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv Structural Health Monitoring 2011: Condition-Based Maintenance and Intelligent Structures - Proceedings of the 8th International Workshop on Structural Health Monitoring, v. 1, p. 1196-1205.
http://hdl.handle.net/11449/73036
WOS:000297634100145
2-s2.0-84866648665
identifier_str_mv Structural Health Monitoring 2011: Condition-Based Maintenance and Intelligent Structures - Proceedings of the 8th International Workshop on Structural Health Monitoring, v. 1, p. 1196-1205.
WOS:000297634100145
2-s2.0-84866648665
url http://hdl.handle.net/11449/73036
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Structural Health Monitoring 2011: Condition-Based Maintenance and Intelligent Structures - Proceedings of the 8th International Workshop on Structural Health Monitoring
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 1196-1205
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128526668267520