Characterization of the temperature, load and damage effects using piezoelectric transducer patches based on fuzzy clustering
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/73036 |
Resumo: | Structural Health Monitoring (SHM) denotes a system with the ability to detect and interpret adverse changes in a structure. One of the critical challenges for practical implementation of SHM system is the ability to detect damage under changing environmental conditions. This paper aims to characterize the temperature, load and damage effects in the sensor measurements obtained with piezoelectric transducer (PZT) patches. Data sets are collected on thin aluminum specimens under different environmental conditions and artificially induced damage states. The fuzzy clustering algorithm is used to organize the sensor measurements into a set of clusters, which can attribute the variation in sensor data due to temperature, load or any induced damage. |
id |
UNSP_3a0b4c134acaddbf2b59f1a32bb725d6 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/73036 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Characterization of the temperature, load and damage effects using piezoelectric transducer patches based on fuzzy clusteringCritical challengesDamage effectsData setsEnvironmental conditionsInduced damagePractical implementationPZTSensor dataSensor measurementsAluminumFuzzy clusteringIntelligent structuresMaintenancePiezoelectric transducersSensorsStructural Health Monitoring (SHM) denotes a system with the ability to detect and interpret adverse changes in a structure. One of the critical challenges for practical implementation of SHM system is the ability to detect damage under changing environmental conditions. This paper aims to characterize the temperature, load and damage effects in the sensor measurements obtained with piezoelectric transducer (PZT) patches. Data sets are collected on thin aluminum specimens under different environmental conditions and artificially induced damage states. The fuzzy clustering algorithm is used to organize the sensor measurements into a set of clusters, which can attribute the variation in sensor data due to temperature, load or any induced damage.Univ Estadual Paulista UNESP, Ilha Solteira, SPWestern Paraná State University (UNIOESTE) Centro de Engenharias e Ciências Exatas (CECE), Foz do Iguaçu, PRDepartment of Aeronautics and Astronautics Stanford UniversityDepartment of Computational and Mathematical Engineering Stanford UniversityUniv Estadual Paulista UNESP, Ilha Solteira, SPUniversidade Estadual Paulista (Unesp)Centro de Engenharias e Ciências Exatas (CECE)Stanford UniversityLopes, V. [UNESP]Gonsalez, C. G. [UNESP]Da Silva, S.Roy, S.Kode, K.Sunor, F.2014-05-27T11:26:19Z2014-05-27T11:26:19Z2011-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject1196-1205Structural Health Monitoring 2011: Condition-Based Maintenance and Intelligent Structures - Proceedings of the 8th International Workshop on Structural Health Monitoring, v. 1, p. 1196-1205.http://hdl.handle.net/11449/73036WOS:0002976341001452-s2.0-84866648665Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengStructural Health Monitoring 2011: Condition-Based Maintenance and Intelligent Structures - Proceedings of the 8th International Workshop on Structural Health Monitoringinfo:eu-repo/semantics/openAccess2021-10-23T21:37:54Zoai:repositorio.unesp.br:11449/73036Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:31:40.889913Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Characterization of the temperature, load and damage effects using piezoelectric transducer patches based on fuzzy clustering |
title |
Characterization of the temperature, load and damage effects using piezoelectric transducer patches based on fuzzy clustering |
spellingShingle |
Characterization of the temperature, load and damage effects using piezoelectric transducer patches based on fuzzy clustering Lopes, V. [UNESP] Critical challenges Damage effects Data sets Environmental conditions Induced damage Practical implementation PZT Sensor data Sensor measurements Aluminum Fuzzy clustering Intelligent structures Maintenance Piezoelectric transducers Sensors |
title_short |
Characterization of the temperature, load and damage effects using piezoelectric transducer patches based on fuzzy clustering |
title_full |
Characterization of the temperature, load and damage effects using piezoelectric transducer patches based on fuzzy clustering |
title_fullStr |
Characterization of the temperature, load and damage effects using piezoelectric transducer patches based on fuzzy clustering |
title_full_unstemmed |
Characterization of the temperature, load and damage effects using piezoelectric transducer patches based on fuzzy clustering |
title_sort |
Characterization of the temperature, load and damage effects using piezoelectric transducer patches based on fuzzy clustering |
author |
Lopes, V. [UNESP] |
author_facet |
Lopes, V. [UNESP] Gonsalez, C. G. [UNESP] Da Silva, S. Roy, S. Kode, K. Sunor, F. |
author_role |
author |
author2 |
Gonsalez, C. G. [UNESP] Da Silva, S. Roy, S. Kode, K. Sunor, F. |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Centro de Engenharias e Ciências Exatas (CECE) Stanford University |
dc.contributor.author.fl_str_mv |
Lopes, V. [UNESP] Gonsalez, C. G. [UNESP] Da Silva, S. Roy, S. Kode, K. Sunor, F. |
dc.subject.por.fl_str_mv |
Critical challenges Damage effects Data sets Environmental conditions Induced damage Practical implementation PZT Sensor data Sensor measurements Aluminum Fuzzy clustering Intelligent structures Maintenance Piezoelectric transducers Sensors |
topic |
Critical challenges Damage effects Data sets Environmental conditions Induced damage Practical implementation PZT Sensor data Sensor measurements Aluminum Fuzzy clustering Intelligent structures Maintenance Piezoelectric transducers Sensors |
description |
Structural Health Monitoring (SHM) denotes a system with the ability to detect and interpret adverse changes in a structure. One of the critical challenges for practical implementation of SHM system is the ability to detect damage under changing environmental conditions. This paper aims to characterize the temperature, load and damage effects in the sensor measurements obtained with piezoelectric transducer (PZT) patches. Data sets are collected on thin aluminum specimens under different environmental conditions and artificially induced damage states. The fuzzy clustering algorithm is used to organize the sensor measurements into a set of clusters, which can attribute the variation in sensor data due to temperature, load or any induced damage. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-12-01 2014-05-27T11:26:19Z 2014-05-27T11:26:19Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Structural Health Monitoring 2011: Condition-Based Maintenance and Intelligent Structures - Proceedings of the 8th International Workshop on Structural Health Monitoring, v. 1, p. 1196-1205. http://hdl.handle.net/11449/73036 WOS:000297634100145 2-s2.0-84866648665 |
identifier_str_mv |
Structural Health Monitoring 2011: Condition-Based Maintenance and Intelligent Structures - Proceedings of the 8th International Workshop on Structural Health Monitoring, v. 1, p. 1196-1205. WOS:000297634100145 2-s2.0-84866648665 |
url |
http://hdl.handle.net/11449/73036 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Structural Health Monitoring 2011: Condition-Based Maintenance and Intelligent Structures - Proceedings of the 8th International Workshop on Structural Health Monitoring |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
1196-1205 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128526668267520 |