STABLE PIECEWISE POLYNOMIAL VECTOR FIELDS

Detalhes bibliográficos
Autor(a) principal: Pessoa, Claudio [UNESP]
Data de Publicação: 2012
Outros Autores: Sotomayor, Jorge
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://ejde.math.txstate.edu/
http://hdl.handle.net/11449/22171
Resumo: Let N = {y > 0} and S = {y < 0} be the semi-planes of R-2 having as common boundary the line D = {y = 0}. Let X and Y be polynomial vector fields defined in N and S, respectively, leading to a discontinuous piecewise polynomial vector field Z = (X, Y). This work pursues the stability and the transition analysis of solutions of Z between N and S, started by Filippov (1988) and Kozlova (1984) and reformulated by Sotomayor-Teixeira (1995) in terms of the regularization method. This method consists in analyzing a one parameter family of continuous vector fields Z(epsilon), defined by averaging X and Y. This family approaches Z when the parameter goes to zero. The results of Sotomayor-Teixeira and Sotomayor-Machado (2002) providing conditions on (X, Y) for the regularized vector fields to be structurally stable on planar compact connected regions are extended to discontinuous piecewise polynomial vector fields on R-2. Pertinent genericity results for vector fields satisfying the above stability conditions are also extended to the present case. A procedure for the study of discontinuous piecewise vector fields at infinity through a compactification is proposed here.
id UNSP_3a1b984fe52673dbfcbee18e13964453
oai_identifier_str oai:repositorio.unesp.br:11449/22171
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling STABLE PIECEWISE POLYNOMIAL VECTOR FIELDSStructural stabilitypiecewise vector fieldscompactification.Let N = {y > 0} and S = {y < 0} be the semi-planes of R-2 having as common boundary the line D = {y = 0}. Let X and Y be polynomial vector fields defined in N and S, respectively, leading to a discontinuous piecewise polynomial vector field Z = (X, Y). This work pursues the stability and the transition analysis of solutions of Z between N and S, started by Filippov (1988) and Kozlova (1984) and reformulated by Sotomayor-Teixeira (1995) in terms of the regularization method. This method consists in analyzing a one parameter family of continuous vector fields Z(epsilon), defined by averaging X and Y. This family approaches Z when the parameter goes to zero. The results of Sotomayor-Teixeira and Sotomayor-Machado (2002) providing conditions on (X, Y) for the regularized vector fields to be structurally stable on planar compact connected regions are extended to discontinuous piecewise polynomial vector fields on R-2. Pertinent genericity results for vector fields satisfying the above stability conditions are also extended to the present case. A procedure for the study of discontinuous piecewise vector fields at infinity through a compactification is proposed here.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Pró-Reitoria de Pesquisa da UNESP (PROPe UNESP)Univ Estadual Paulista, UNESP IBILCE, BR-15054000 Sao Jose do Rio Preto, SP, BrazilUniv São Paulo, Inst Matemat & Estat, BR-05508090 São Paulo, BrazilUniv Estadual Paulista, UNESP IBILCE, BR-15054000 Sao Jose do Rio Preto, SP, BrazilFAPESP: 11/13152-8Texas State UnivUniversidade Estadual Paulista (Unesp)Universidade de São Paulo (USP)Pessoa, Claudio [UNESP]Sotomayor, Jorge2014-05-20T14:02:56Z2014-05-20T14:02:56Z2012-09-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article15application/pdfhttp://ejde.math.txstate.edu/Electronic Journal of Differential Equations. San Marcos: Texas State Univ, p. 15, 2012.1072-6691http://hdl.handle.net/11449/22171WOS:000310454000002WOS000310454000002.pdf37249378865574240000-0001-6790-1055Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengElectronic Journal of Differential Equations0.9440,538info:eu-repo/semantics/openAccess2023-12-18T06:19:14Zoai:repositorio.unesp.br:11449/22171Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:40:59.687818Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv STABLE PIECEWISE POLYNOMIAL VECTOR FIELDS
title STABLE PIECEWISE POLYNOMIAL VECTOR FIELDS
spellingShingle STABLE PIECEWISE POLYNOMIAL VECTOR FIELDS
Pessoa, Claudio [UNESP]
Structural stability
piecewise vector fields
compactification.
title_short STABLE PIECEWISE POLYNOMIAL VECTOR FIELDS
title_full STABLE PIECEWISE POLYNOMIAL VECTOR FIELDS
title_fullStr STABLE PIECEWISE POLYNOMIAL VECTOR FIELDS
title_full_unstemmed STABLE PIECEWISE POLYNOMIAL VECTOR FIELDS
title_sort STABLE PIECEWISE POLYNOMIAL VECTOR FIELDS
author Pessoa, Claudio [UNESP]
author_facet Pessoa, Claudio [UNESP]
Sotomayor, Jorge
author_role author
author2 Sotomayor, Jorge
author2_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade de São Paulo (USP)
dc.contributor.author.fl_str_mv Pessoa, Claudio [UNESP]
Sotomayor, Jorge
dc.subject.por.fl_str_mv Structural stability
piecewise vector fields
compactification.
topic Structural stability
piecewise vector fields
compactification.
description Let N = {y > 0} and S = {y < 0} be the semi-planes of R-2 having as common boundary the line D = {y = 0}. Let X and Y be polynomial vector fields defined in N and S, respectively, leading to a discontinuous piecewise polynomial vector field Z = (X, Y). This work pursues the stability and the transition analysis of solutions of Z between N and S, started by Filippov (1988) and Kozlova (1984) and reformulated by Sotomayor-Teixeira (1995) in terms of the regularization method. This method consists in analyzing a one parameter family of continuous vector fields Z(epsilon), defined by averaging X and Y. This family approaches Z when the parameter goes to zero. The results of Sotomayor-Teixeira and Sotomayor-Machado (2002) providing conditions on (X, Y) for the regularized vector fields to be structurally stable on planar compact connected regions are extended to discontinuous piecewise polynomial vector fields on R-2. Pertinent genericity results for vector fields satisfying the above stability conditions are also extended to the present case. A procedure for the study of discontinuous piecewise vector fields at infinity through a compactification is proposed here.
publishDate 2012
dc.date.none.fl_str_mv 2012-09-22
2014-05-20T14:02:56Z
2014-05-20T14:02:56Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://ejde.math.txstate.edu/
Electronic Journal of Differential Equations. San Marcos: Texas State Univ, p. 15, 2012.
1072-6691
http://hdl.handle.net/11449/22171
WOS:000310454000002
WOS000310454000002.pdf
3724937886557424
0000-0001-6790-1055
url http://ejde.math.txstate.edu/
http://hdl.handle.net/11449/22171
identifier_str_mv Electronic Journal of Differential Equations. San Marcos: Texas State Univ, p. 15, 2012.
1072-6691
WOS:000310454000002
WOS000310454000002.pdf
3724937886557424
0000-0001-6790-1055
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Electronic Journal of Differential Equations
0.944
0,538
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 15
application/pdf
dc.publisher.none.fl_str_mv Texas State Univ
publisher.none.fl_str_mv Texas State Univ
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129233716772864