STABLE PIECEWISE POLYNOMIAL VECTOR FIELDS
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://ejde.math.txstate.edu/ http://hdl.handle.net/11449/22171 |
Resumo: | Let N = {y > 0} and S = {y < 0} be the semi-planes of R-2 having as common boundary the line D = {y = 0}. Let X and Y be polynomial vector fields defined in N and S, respectively, leading to a discontinuous piecewise polynomial vector field Z = (X, Y). This work pursues the stability and the transition analysis of solutions of Z between N and S, started by Filippov (1988) and Kozlova (1984) and reformulated by Sotomayor-Teixeira (1995) in terms of the regularization method. This method consists in analyzing a one parameter family of continuous vector fields Z(epsilon), defined by averaging X and Y. This family approaches Z when the parameter goes to zero. The results of Sotomayor-Teixeira and Sotomayor-Machado (2002) providing conditions on (X, Y) for the regularized vector fields to be structurally stable on planar compact connected regions are extended to discontinuous piecewise polynomial vector fields on R-2. Pertinent genericity results for vector fields satisfying the above stability conditions are also extended to the present case. A procedure for the study of discontinuous piecewise vector fields at infinity through a compactification is proposed here. |
id |
UNSP_3a1b984fe52673dbfcbee18e13964453 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/22171 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
STABLE PIECEWISE POLYNOMIAL VECTOR FIELDSStructural stabilitypiecewise vector fieldscompactification.Let N = {y > 0} and S = {y < 0} be the semi-planes of R-2 having as common boundary the line D = {y = 0}. Let X and Y be polynomial vector fields defined in N and S, respectively, leading to a discontinuous piecewise polynomial vector field Z = (X, Y). This work pursues the stability and the transition analysis of solutions of Z between N and S, started by Filippov (1988) and Kozlova (1984) and reformulated by Sotomayor-Teixeira (1995) in terms of the regularization method. This method consists in analyzing a one parameter family of continuous vector fields Z(epsilon), defined by averaging X and Y. This family approaches Z when the parameter goes to zero. The results of Sotomayor-Teixeira and Sotomayor-Machado (2002) providing conditions on (X, Y) for the regularized vector fields to be structurally stable on planar compact connected regions are extended to discontinuous piecewise polynomial vector fields on R-2. Pertinent genericity results for vector fields satisfying the above stability conditions are also extended to the present case. A procedure for the study of discontinuous piecewise vector fields at infinity through a compactification is proposed here.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Pró-Reitoria de Pesquisa da UNESP (PROPe UNESP)Univ Estadual Paulista, UNESP IBILCE, BR-15054000 Sao Jose do Rio Preto, SP, BrazilUniv São Paulo, Inst Matemat & Estat, BR-05508090 São Paulo, BrazilUniv Estadual Paulista, UNESP IBILCE, BR-15054000 Sao Jose do Rio Preto, SP, BrazilFAPESP: 11/13152-8Texas State UnivUniversidade Estadual Paulista (Unesp)Universidade de São Paulo (USP)Pessoa, Claudio [UNESP]Sotomayor, Jorge2014-05-20T14:02:56Z2014-05-20T14:02:56Z2012-09-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article15application/pdfhttp://ejde.math.txstate.edu/Electronic Journal of Differential Equations. San Marcos: Texas State Univ, p. 15, 2012.1072-6691http://hdl.handle.net/11449/22171WOS:000310454000002WOS000310454000002.pdf37249378865574240000-0001-6790-1055Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengElectronic Journal of Differential Equations0.9440,538info:eu-repo/semantics/openAccess2023-12-18T06:19:14Zoai:repositorio.unesp.br:11449/22171Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:40:59.687818Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
STABLE PIECEWISE POLYNOMIAL VECTOR FIELDS |
title |
STABLE PIECEWISE POLYNOMIAL VECTOR FIELDS |
spellingShingle |
STABLE PIECEWISE POLYNOMIAL VECTOR FIELDS Pessoa, Claudio [UNESP] Structural stability piecewise vector fields compactification. |
title_short |
STABLE PIECEWISE POLYNOMIAL VECTOR FIELDS |
title_full |
STABLE PIECEWISE POLYNOMIAL VECTOR FIELDS |
title_fullStr |
STABLE PIECEWISE POLYNOMIAL VECTOR FIELDS |
title_full_unstemmed |
STABLE PIECEWISE POLYNOMIAL VECTOR FIELDS |
title_sort |
STABLE PIECEWISE POLYNOMIAL VECTOR FIELDS |
author |
Pessoa, Claudio [UNESP] |
author_facet |
Pessoa, Claudio [UNESP] Sotomayor, Jorge |
author_role |
author |
author2 |
Sotomayor, Jorge |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade de São Paulo (USP) |
dc.contributor.author.fl_str_mv |
Pessoa, Claudio [UNESP] Sotomayor, Jorge |
dc.subject.por.fl_str_mv |
Structural stability piecewise vector fields compactification. |
topic |
Structural stability piecewise vector fields compactification. |
description |
Let N = {y > 0} and S = {y < 0} be the semi-planes of R-2 having as common boundary the line D = {y = 0}. Let X and Y be polynomial vector fields defined in N and S, respectively, leading to a discontinuous piecewise polynomial vector field Z = (X, Y). This work pursues the stability and the transition analysis of solutions of Z between N and S, started by Filippov (1988) and Kozlova (1984) and reformulated by Sotomayor-Teixeira (1995) in terms of the regularization method. This method consists in analyzing a one parameter family of continuous vector fields Z(epsilon), defined by averaging X and Y. This family approaches Z when the parameter goes to zero. The results of Sotomayor-Teixeira and Sotomayor-Machado (2002) providing conditions on (X, Y) for the regularized vector fields to be structurally stable on planar compact connected regions are extended to discontinuous piecewise polynomial vector fields on R-2. Pertinent genericity results for vector fields satisfying the above stability conditions are also extended to the present case. A procedure for the study of discontinuous piecewise vector fields at infinity through a compactification is proposed here. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-09-22 2014-05-20T14:02:56Z 2014-05-20T14:02:56Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://ejde.math.txstate.edu/ Electronic Journal of Differential Equations. San Marcos: Texas State Univ, p. 15, 2012. 1072-6691 http://hdl.handle.net/11449/22171 WOS:000310454000002 WOS000310454000002.pdf 3724937886557424 0000-0001-6790-1055 |
url |
http://ejde.math.txstate.edu/ http://hdl.handle.net/11449/22171 |
identifier_str_mv |
Electronic Journal of Differential Equations. San Marcos: Texas State Univ, p. 15, 2012. 1072-6691 WOS:000310454000002 WOS000310454000002.pdf 3724937886557424 0000-0001-6790-1055 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Electronic Journal of Differential Equations 0.944 0,538 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
15 application/pdf |
dc.publisher.none.fl_str_mv |
Texas State Univ |
publisher.none.fl_str_mv |
Texas State Univ |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129233716772864 |