Determination of resonant frequencies of triangular and rectangular microstrip antennas, using artificial neural networks

Detalhes bibliográficos
Autor(a) principal: Brinhole, E. R.
Data de Publicação: 2005
Outros Autores: Destro, J. F. Z., Freitas, A. A. C. de, Alcantara, N. P. de [UNESP]
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.2529/PIERS041210091305
http://hdl.handle.net/11449/68592
Resumo: This paper presents models that can be used in the design of microstrip antennas for mobile communications. The antennas can be triangular or rectangular. The presented models are compared with deterministic and empirical models based on artificial neural networks (ANN) presented in the literature. The models are based on Perceptron Multilayer (PML) and Radial Basis Function (RBF) ANN. RBF based models presented the best results. Also, the models can be embedded in CAD systems, in order to design microstrip antennas for mobile communications.
id UNSP_3cc9d197fdd8396d4a00ea3be30fd415
oai_identifier_str oai:repositorio.unesp.br:11449/68592
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Determination of resonant frequencies of triangular and rectangular microstrip antennas, using artificial neural networksAntennasBackpropagationComputer aided designEmbedded systemsFeedforward neural networksMicrostrip antennasMicrowave antennasMobile telecommunication systemsNatural frequenciesNeural networksPiersRadial basis function networksWireless networksArtificial neural networksCad systemsEmpirical modelsMobile communicationsPerceptronRadial basis functionsResonant frequenciesMobile antennasThis paper presents models that can be used in the design of microstrip antennas for mobile communications. The antennas can be triangular or rectangular. The presented models are compared with deterministic and empirical models based on artificial neural networks (ANN) presented in the literature. The models are based on Perceptron Multilayer (PML) and Radial Basis Function (RBF) ANN. RBF based models presented the best results. Also, the models can be embedded in CAD systems, in order to design microstrip antennas for mobile communications.Londrinense Metropolitan Faculty-UMPCEFET at Cornélio ProcópioSão Paulo State University-UnespSão Paulo State University-UnespFaculdade Metropolitana Londrinense (UMP)Centro Federal de Educação Tecnológica (CEFET)Universidade Estadual Paulista (Unesp)Brinhole, E. R.Destro, J. F. Z.Freitas, A. A. C. deAlcantara, N. P. de [UNESP]2014-05-27T11:21:43Z2014-05-27T11:21:43Z2005-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject579-582http://dx.doi.org/10.2529/PIERS041210091305PIERS 2005 - Progress in Electromagnetics Research Symposium, Proceedings, p. 579-582.http://hdl.handle.net/11449/6859210.2529/PIERS0412100913052-s2.0-55749095422Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPIERS 2005 - Progress in Electromagnetics Research Symposium, Proceedingsinfo:eu-repo/semantics/openAccess2021-10-22T18:56:56Zoai:repositorio.unesp.br:11449/68592Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:49:20.935516Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Determination of resonant frequencies of triangular and rectangular microstrip antennas, using artificial neural networks
title Determination of resonant frequencies of triangular and rectangular microstrip antennas, using artificial neural networks
spellingShingle Determination of resonant frequencies of triangular and rectangular microstrip antennas, using artificial neural networks
Brinhole, E. R.
Antennas
Backpropagation
Computer aided design
Embedded systems
Feedforward neural networks
Microstrip antennas
Microwave antennas
Mobile telecommunication systems
Natural frequencies
Neural networks
Piers
Radial basis function networks
Wireless networks
Artificial neural networks
Cad systems
Empirical models
Mobile communications
Perceptron
Radial basis functions
Resonant frequencies
Mobile antennas
title_short Determination of resonant frequencies of triangular and rectangular microstrip antennas, using artificial neural networks
title_full Determination of resonant frequencies of triangular and rectangular microstrip antennas, using artificial neural networks
title_fullStr Determination of resonant frequencies of triangular and rectangular microstrip antennas, using artificial neural networks
title_full_unstemmed Determination of resonant frequencies of triangular and rectangular microstrip antennas, using artificial neural networks
title_sort Determination of resonant frequencies of triangular and rectangular microstrip antennas, using artificial neural networks
author Brinhole, E. R.
author_facet Brinhole, E. R.
Destro, J. F. Z.
Freitas, A. A. C. de
Alcantara, N. P. de [UNESP]
author_role author
author2 Destro, J. F. Z.
Freitas, A. A. C. de
Alcantara, N. P. de [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Faculdade Metropolitana Londrinense (UMP)
Centro Federal de Educação Tecnológica (CEFET)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Brinhole, E. R.
Destro, J. F. Z.
Freitas, A. A. C. de
Alcantara, N. P. de [UNESP]
dc.subject.por.fl_str_mv Antennas
Backpropagation
Computer aided design
Embedded systems
Feedforward neural networks
Microstrip antennas
Microwave antennas
Mobile telecommunication systems
Natural frequencies
Neural networks
Piers
Radial basis function networks
Wireless networks
Artificial neural networks
Cad systems
Empirical models
Mobile communications
Perceptron
Radial basis functions
Resonant frequencies
Mobile antennas
topic Antennas
Backpropagation
Computer aided design
Embedded systems
Feedforward neural networks
Microstrip antennas
Microwave antennas
Mobile telecommunication systems
Natural frequencies
Neural networks
Piers
Radial basis function networks
Wireless networks
Artificial neural networks
Cad systems
Empirical models
Mobile communications
Perceptron
Radial basis functions
Resonant frequencies
Mobile antennas
description This paper presents models that can be used in the design of microstrip antennas for mobile communications. The antennas can be triangular or rectangular. The presented models are compared with deterministic and empirical models based on artificial neural networks (ANN) presented in the literature. The models are based on Perceptron Multilayer (PML) and Radial Basis Function (RBF) ANN. RBF based models presented the best results. Also, the models can be embedded in CAD systems, in order to design microstrip antennas for mobile communications.
publishDate 2005
dc.date.none.fl_str_mv 2005-12-01
2014-05-27T11:21:43Z
2014-05-27T11:21:43Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.2529/PIERS041210091305
PIERS 2005 - Progress in Electromagnetics Research Symposium, Proceedings, p. 579-582.
http://hdl.handle.net/11449/68592
10.2529/PIERS041210091305
2-s2.0-55749095422
url http://dx.doi.org/10.2529/PIERS041210091305
http://hdl.handle.net/11449/68592
identifier_str_mv PIERS 2005 - Progress in Electromagnetics Research Symposium, Proceedings, p. 579-582.
10.2529/PIERS041210091305
2-s2.0-55749095422
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv PIERS 2005 - Progress in Electromagnetics Research Symposium, Proceedings
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 579-582
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128984499617792