Modelling of a pneumatic actuator

Detalhes bibliográficos
Autor(a) principal: Felix, Roger Oliva [UNESP]
Data de Publicação: 2019
Outros Autores: Bueno, Átila Madureira [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.15866/ireme.v13i7.17219
http://hdl.handle.net/11449/232940
Resumo: This paper refers to the modelling of a pneumatic actuator coupled to a mechanical system (mass-spring-damper). These actuators contain a clean technology compared to hydraulic actuators, a good relation between power and mass supported, and low cost in relation to electric actuators. In order to develop the modelling, it is needed to determine the motion equation by the Lagrange method, calculating the system energies (kinetic energy, potential energy, and dissipative energy of Rayleigh). This modelling is performed for a fluidic system with constant pressure differential and a fluidic system with variable pressure differential, applying a pressure with harmonic characteristics. Moreover, with the application of the numerical simulations to this model, it is possible to find similar responses to the real system. Thus, it is demonstrated that the facility of modelling of the pneumatic actuator occurs due to the coupling of the mechanical system. The numerical responses are obtained as a function of time and in the phase plane in order to analyze the equilibrium type of the system.
id UNSP_3cd78dd58939020098c1597308afe25a
oai_identifier_str oai:repositorio.unesp.br:11449/232940
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Modelling of a pneumatic actuatorEquilibrium typesLagrange methodMechanical systemNumeric simulationThis paper refers to the modelling of a pneumatic actuator coupled to a mechanical system (mass-spring-damper). These actuators contain a clean technology compared to hydraulic actuators, a good relation between power and mass supported, and low cost in relation to electric actuators. In order to develop the modelling, it is needed to determine the motion equation by the Lagrange method, calculating the system energies (kinetic energy, potential energy, and dissipative energy of Rayleigh). This modelling is performed for a fluidic system with constant pressure differential and a fluidic system with variable pressure differential, applying a pressure with harmonic characteristics. Moreover, with the application of the numerical simulations to this model, it is possible to find similar responses to the real system. Thus, it is demonstrated that the facility of modelling of the pneumatic actuator occurs due to the coupling of the mechanical system. The numerical responses are obtained as a function of time and in the phase plane in order to analyze the equilibrium type of the system.São Paulo State UniversitySão Paulo State UniversityUniversidade Estadual Paulista (UNESP)Felix, Roger Oliva [UNESP]Bueno, Átila Madureira [UNESP]2022-04-30T21:05:46Z2022-04-30T21:05:46Z2019-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article402-411http://dx.doi.org/10.15866/ireme.v13i7.17219International Review of Mechanical Engineering, v. 13, n. 7, p. 402-411, 2019.2532-56551970-8734http://hdl.handle.net/11449/23294010.15866/ireme.v13i7.172192-s2.0-85075528502Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInternational Review of Mechanical Engineeringinfo:eu-repo/semantics/openAccess2022-04-30T21:05:46Zoai:repositorio.unesp.br:11449/232940Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462022-04-30T21:05:46Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Modelling of a pneumatic actuator
title Modelling of a pneumatic actuator
spellingShingle Modelling of a pneumatic actuator
Felix, Roger Oliva [UNESP]
Equilibrium types
Lagrange method
Mechanical system
Numeric simulation
title_short Modelling of a pneumatic actuator
title_full Modelling of a pneumatic actuator
title_fullStr Modelling of a pneumatic actuator
title_full_unstemmed Modelling of a pneumatic actuator
title_sort Modelling of a pneumatic actuator
author Felix, Roger Oliva [UNESP]
author_facet Felix, Roger Oliva [UNESP]
Bueno, Átila Madureira [UNESP]
author_role author
author2 Bueno, Átila Madureira [UNESP]
author2_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Felix, Roger Oliva [UNESP]
Bueno, Átila Madureira [UNESP]
dc.subject.por.fl_str_mv Equilibrium types
Lagrange method
Mechanical system
Numeric simulation
topic Equilibrium types
Lagrange method
Mechanical system
Numeric simulation
description This paper refers to the modelling of a pneumatic actuator coupled to a mechanical system (mass-spring-damper). These actuators contain a clean technology compared to hydraulic actuators, a good relation between power and mass supported, and low cost in relation to electric actuators. In order to develop the modelling, it is needed to determine the motion equation by the Lagrange method, calculating the system energies (kinetic energy, potential energy, and dissipative energy of Rayleigh). This modelling is performed for a fluidic system with constant pressure differential and a fluidic system with variable pressure differential, applying a pressure with harmonic characteristics. Moreover, with the application of the numerical simulations to this model, it is possible to find similar responses to the real system. Thus, it is demonstrated that the facility of modelling of the pneumatic actuator occurs due to the coupling of the mechanical system. The numerical responses are obtained as a function of time and in the phase plane in order to analyze the equilibrium type of the system.
publishDate 2019
dc.date.none.fl_str_mv 2019-01-01
2022-04-30T21:05:46Z
2022-04-30T21:05:46Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.15866/ireme.v13i7.17219
International Review of Mechanical Engineering, v. 13, n. 7, p. 402-411, 2019.
2532-5655
1970-8734
http://hdl.handle.net/11449/232940
10.15866/ireme.v13i7.17219
2-s2.0-85075528502
url http://dx.doi.org/10.15866/ireme.v13i7.17219
http://hdl.handle.net/11449/232940
identifier_str_mv International Review of Mechanical Engineering, v. 13, n. 7, p. 402-411, 2019.
2532-5655
1970-8734
10.15866/ireme.v13i7.17219
2-s2.0-85075528502
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv International Review of Mechanical Engineering
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 402-411
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1803650339548692480