Modelling of a pneumatic actuator
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.15866/ireme.v13i7.17219 http://hdl.handle.net/11449/232940 |
Resumo: | This paper refers to the modelling of a pneumatic actuator coupled to a mechanical system (mass-spring-damper). These actuators contain a clean technology compared to hydraulic actuators, a good relation between power and mass supported, and low cost in relation to electric actuators. In order to develop the modelling, it is needed to determine the motion equation by the Lagrange method, calculating the system energies (kinetic energy, potential energy, and dissipative energy of Rayleigh). This modelling is performed for a fluidic system with constant pressure differential and a fluidic system with variable pressure differential, applying a pressure with harmonic characteristics. Moreover, with the application of the numerical simulations to this model, it is possible to find similar responses to the real system. Thus, it is demonstrated that the facility of modelling of the pneumatic actuator occurs due to the coupling of the mechanical system. The numerical responses are obtained as a function of time and in the phase plane in order to analyze the equilibrium type of the system. |
id |
UNSP_3cd78dd58939020098c1597308afe25a |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/232940 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Modelling of a pneumatic actuatorEquilibrium typesLagrange methodMechanical systemNumeric simulationThis paper refers to the modelling of a pneumatic actuator coupled to a mechanical system (mass-spring-damper). These actuators contain a clean technology compared to hydraulic actuators, a good relation between power and mass supported, and low cost in relation to electric actuators. In order to develop the modelling, it is needed to determine the motion equation by the Lagrange method, calculating the system energies (kinetic energy, potential energy, and dissipative energy of Rayleigh). This modelling is performed for a fluidic system with constant pressure differential and a fluidic system with variable pressure differential, applying a pressure with harmonic characteristics. Moreover, with the application of the numerical simulations to this model, it is possible to find similar responses to the real system. Thus, it is demonstrated that the facility of modelling of the pneumatic actuator occurs due to the coupling of the mechanical system. The numerical responses are obtained as a function of time and in the phase plane in order to analyze the equilibrium type of the system.São Paulo State UniversitySão Paulo State UniversityUniversidade Estadual Paulista (UNESP)Felix, Roger Oliva [UNESP]Bueno, Átila Madureira [UNESP]2022-04-30T21:05:46Z2022-04-30T21:05:46Z2019-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article402-411http://dx.doi.org/10.15866/ireme.v13i7.17219International Review of Mechanical Engineering, v. 13, n. 7, p. 402-411, 2019.2532-56551970-8734http://hdl.handle.net/11449/23294010.15866/ireme.v13i7.172192-s2.0-85075528502Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInternational Review of Mechanical Engineeringinfo:eu-repo/semantics/openAccess2022-04-30T21:05:46Zoai:repositorio.unesp.br:11449/232940Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:48:58.485232Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Modelling of a pneumatic actuator |
title |
Modelling of a pneumatic actuator |
spellingShingle |
Modelling of a pneumatic actuator Felix, Roger Oliva [UNESP] Equilibrium types Lagrange method Mechanical system Numeric simulation |
title_short |
Modelling of a pneumatic actuator |
title_full |
Modelling of a pneumatic actuator |
title_fullStr |
Modelling of a pneumatic actuator |
title_full_unstemmed |
Modelling of a pneumatic actuator |
title_sort |
Modelling of a pneumatic actuator |
author |
Felix, Roger Oliva [UNESP] |
author_facet |
Felix, Roger Oliva [UNESP] Bueno, Átila Madureira [UNESP] |
author_role |
author |
author2 |
Bueno, Átila Madureira [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Felix, Roger Oliva [UNESP] Bueno, Átila Madureira [UNESP] |
dc.subject.por.fl_str_mv |
Equilibrium types Lagrange method Mechanical system Numeric simulation |
topic |
Equilibrium types Lagrange method Mechanical system Numeric simulation |
description |
This paper refers to the modelling of a pneumatic actuator coupled to a mechanical system (mass-spring-damper). These actuators contain a clean technology compared to hydraulic actuators, a good relation between power and mass supported, and low cost in relation to electric actuators. In order to develop the modelling, it is needed to determine the motion equation by the Lagrange method, calculating the system energies (kinetic energy, potential energy, and dissipative energy of Rayleigh). This modelling is performed for a fluidic system with constant pressure differential and a fluidic system with variable pressure differential, applying a pressure with harmonic characteristics. Moreover, with the application of the numerical simulations to this model, it is possible to find similar responses to the real system. Thus, it is demonstrated that the facility of modelling of the pneumatic actuator occurs due to the coupling of the mechanical system. The numerical responses are obtained as a function of time and in the phase plane in order to analyze the equilibrium type of the system. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-01-01 2022-04-30T21:05:46Z 2022-04-30T21:05:46Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.15866/ireme.v13i7.17219 International Review of Mechanical Engineering, v. 13, n. 7, p. 402-411, 2019. 2532-5655 1970-8734 http://hdl.handle.net/11449/232940 10.15866/ireme.v13i7.17219 2-s2.0-85075528502 |
url |
http://dx.doi.org/10.15866/ireme.v13i7.17219 http://hdl.handle.net/11449/232940 |
identifier_str_mv |
International Review of Mechanical Engineering, v. 13, n. 7, p. 402-411, 2019. 2532-5655 1970-8734 10.15866/ireme.v13i7.17219 2-s2.0-85075528502 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
International Review of Mechanical Engineering |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
402-411 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129554548523008 |