Using infrared spectroscopy of serum and chemometrics for diagnosis of paracoccidioidomycosis

Detalhes bibliográficos
Autor(a) principal: Koehler, Alessandra
Data de Publicação: 2022
Outros Autores: Scroferneker, Maria Lúcia, Pereira, Beatriz Aparecida Soares [UNESP], Pereira de Souza, Nikolas Mateus, de Souza Cavalcante, Ricardo [UNESP], Mendes, Rinaldo Pôncio [UNESP], Corbellini, Valeriano Antonio
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.jpba.2022.115021
http://hdl.handle.net/11449/249140
Resumo: Paracoccidioidomycosis (PCM) is a systemic granulomatous mycosis endemic to Latin America, whose etiologic agents are fungi of the genus Paracoccidioides. PCM is usually diagnosed by microscopic observation of the fungus in biological samples, combined or not with other techniques such as serological methods. However, all currently used diagnostic methods have limitations. The objective of this study was to develop a method based on Fourier transform infrared spectroscopy (FTIR) and chemometric analysis for PCM diagnosis. We included 224 serum samples: 132 PCM sera, 24 aspergillosis sera, 10 cryptococcosis sera, 8 histoplasmosis sera, and 50 sera from healthy blood donors. Samples were analyzed by attenuated total reflection (ATR), and chemometric analyses including exploratory analysis through principal component analysis (PCA) and a classification method (PCM and non-PCM) through orthogonal partial least squares discriminant analysis (OPLS-DA). The spectra were similar, with the main bands up to approximately 1652 cm–1 and 1543 cm–1 (amide I and amide II bands). This same region was mainly responsible for the partial separation of the samples in PCA. The OPLS-DA model correctly classified all serum samples with only one latent variable, with a determination coefficient (R²) higher than 0.999 for both the calibration set and prediction set. Sensitivity and specificity were 100% for both sets, showing better performance than the reference diagnostic methods. Therefore, the use of FTIR/ATR together with OPLS-DA modeling proved to be a promising method for PCM diagnosis.
id UNSP_3cf15ac2934da208731c2c4c7e476a88
oai_identifier_str oai:repositorio.unesp.br:11449/249140
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Using infrared spectroscopy of serum and chemometrics for diagnosis of paracoccidioidomycosisFourier transform infrared spectroscopyMultivariate analysisOrthogonal partial least squares discriminant analysisParacoccidioidomycosisPhotodiagnosisSystemic mycosisParacoccidioidomycosis (PCM) is a systemic granulomatous mycosis endemic to Latin America, whose etiologic agents are fungi of the genus Paracoccidioides. PCM is usually diagnosed by microscopic observation of the fungus in biological samples, combined or not with other techniques such as serological methods. However, all currently used diagnostic methods have limitations. The objective of this study was to develop a method based on Fourier transform infrared spectroscopy (FTIR) and chemometric analysis for PCM diagnosis. We included 224 serum samples: 132 PCM sera, 24 aspergillosis sera, 10 cryptococcosis sera, 8 histoplasmosis sera, and 50 sera from healthy blood donors. Samples were analyzed by attenuated total reflection (ATR), and chemometric analyses including exploratory analysis through principal component analysis (PCA) and a classification method (PCM and non-PCM) through orthogonal partial least squares discriminant analysis (OPLS-DA). The spectra were similar, with the main bands up to approximately 1652 cm–1 and 1543 cm–1 (amide I and amide II bands). This same region was mainly responsible for the partial separation of the samples in PCA. The OPLS-DA model correctly classified all serum samples with only one latent variable, with a determination coefficient (R²) higher than 0.999 for both the calibration set and prediction set. Sensitivity and specificity were 100% for both sets, showing better performance than the reference diagnostic methods. Therefore, the use of FTIR/ATR together with OPLS-DA modeling proved to be a promising method for PCM diagnosis.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Postgraduate Program of Medicine: Medical Sciences Universidade Federal do Rio Grande do Sul - UFRGSDepartment of Microbiology Immunology and Parasitology ICBS Universidade Federal do Rio Grande do Sul - UFRGSTropical Diseases Area School of Medicine Universidade Estadual Paulista - UNESPDepartment of Life Sciences Universidade de Santa Cruz do Sul - UNISCDepartment of Sciences Humanities and Education Postgraduate Program in Health Promotion Postgraduate Program in Environmental Technology Universidade de Santa Cruz do Sul - UNISCTropical Diseases Area School of Medicine Universidade Estadual Paulista - UNESPCNPq: 442448/2019-8Universidade Federal do Rio Grande do Sul - UFRGSUniversidade Estadual Paulista (UNESP)Universidade de Santa Cruz do Sul - UNISCKoehler, AlessandraScroferneker, Maria LúciaPereira, Beatriz Aparecida Soares [UNESP]Pereira de Souza, Nikolas Mateusde Souza Cavalcante, Ricardo [UNESP]Mendes, Rinaldo Pôncio [UNESP]Corbellini, Valeriano Antonio2023-07-29T14:03:32Z2023-07-29T14:03:32Z2022-11-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1016/j.jpba.2022.115021Journal of Pharmaceutical and Biomedical Analysis, v. 221.1873-264X0731-7085http://hdl.handle.net/11449/24914010.1016/j.jpba.2022.1150212-s2.0-85137756793Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Pharmaceutical and Biomedical Analysisinfo:eu-repo/semantics/openAccess2024-08-15T15:23:15Zoai:repositorio.unesp.br:11449/249140Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-15T15:23:15Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Using infrared spectroscopy of serum and chemometrics for diagnosis of paracoccidioidomycosis
title Using infrared spectroscopy of serum and chemometrics for diagnosis of paracoccidioidomycosis
spellingShingle Using infrared spectroscopy of serum and chemometrics for diagnosis of paracoccidioidomycosis
Koehler, Alessandra
Fourier transform infrared spectroscopy
Multivariate analysis
Orthogonal partial least squares discriminant analysis
Paracoccidioidomycosis
Photodiagnosis
Systemic mycosis
title_short Using infrared spectroscopy of serum and chemometrics for diagnosis of paracoccidioidomycosis
title_full Using infrared spectroscopy of serum and chemometrics for diagnosis of paracoccidioidomycosis
title_fullStr Using infrared spectroscopy of serum and chemometrics for diagnosis of paracoccidioidomycosis
title_full_unstemmed Using infrared spectroscopy of serum and chemometrics for diagnosis of paracoccidioidomycosis
title_sort Using infrared spectroscopy of serum and chemometrics for diagnosis of paracoccidioidomycosis
author Koehler, Alessandra
author_facet Koehler, Alessandra
Scroferneker, Maria Lúcia
Pereira, Beatriz Aparecida Soares [UNESP]
Pereira de Souza, Nikolas Mateus
de Souza Cavalcante, Ricardo [UNESP]
Mendes, Rinaldo Pôncio [UNESP]
Corbellini, Valeriano Antonio
author_role author
author2 Scroferneker, Maria Lúcia
Pereira, Beatriz Aparecida Soares [UNESP]
Pereira de Souza, Nikolas Mateus
de Souza Cavalcante, Ricardo [UNESP]
Mendes, Rinaldo Pôncio [UNESP]
Corbellini, Valeriano Antonio
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Federal do Rio Grande do Sul - UFRGS
Universidade Estadual Paulista (UNESP)
Universidade de Santa Cruz do Sul - UNISC
dc.contributor.author.fl_str_mv Koehler, Alessandra
Scroferneker, Maria Lúcia
Pereira, Beatriz Aparecida Soares [UNESP]
Pereira de Souza, Nikolas Mateus
de Souza Cavalcante, Ricardo [UNESP]
Mendes, Rinaldo Pôncio [UNESP]
Corbellini, Valeriano Antonio
dc.subject.por.fl_str_mv Fourier transform infrared spectroscopy
Multivariate analysis
Orthogonal partial least squares discriminant analysis
Paracoccidioidomycosis
Photodiagnosis
Systemic mycosis
topic Fourier transform infrared spectroscopy
Multivariate analysis
Orthogonal partial least squares discriminant analysis
Paracoccidioidomycosis
Photodiagnosis
Systemic mycosis
description Paracoccidioidomycosis (PCM) is a systemic granulomatous mycosis endemic to Latin America, whose etiologic agents are fungi of the genus Paracoccidioides. PCM is usually diagnosed by microscopic observation of the fungus in biological samples, combined or not with other techniques such as serological methods. However, all currently used diagnostic methods have limitations. The objective of this study was to develop a method based on Fourier transform infrared spectroscopy (FTIR) and chemometric analysis for PCM diagnosis. We included 224 serum samples: 132 PCM sera, 24 aspergillosis sera, 10 cryptococcosis sera, 8 histoplasmosis sera, and 50 sera from healthy blood donors. Samples were analyzed by attenuated total reflection (ATR), and chemometric analyses including exploratory analysis through principal component analysis (PCA) and a classification method (PCM and non-PCM) through orthogonal partial least squares discriminant analysis (OPLS-DA). The spectra were similar, with the main bands up to approximately 1652 cm–1 and 1543 cm–1 (amide I and amide II bands). This same region was mainly responsible for the partial separation of the samples in PCA. The OPLS-DA model correctly classified all serum samples with only one latent variable, with a determination coefficient (R²) higher than 0.999 for both the calibration set and prediction set. Sensitivity and specificity were 100% for both sets, showing better performance than the reference diagnostic methods. Therefore, the use of FTIR/ATR together with OPLS-DA modeling proved to be a promising method for PCM diagnosis.
publishDate 2022
dc.date.none.fl_str_mv 2022-11-30
2023-07-29T14:03:32Z
2023-07-29T14:03:32Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.jpba.2022.115021
Journal of Pharmaceutical and Biomedical Analysis, v. 221.
1873-264X
0731-7085
http://hdl.handle.net/11449/249140
10.1016/j.jpba.2022.115021
2-s2.0-85137756793
url http://dx.doi.org/10.1016/j.jpba.2022.115021
http://hdl.handle.net/11449/249140
identifier_str_mv Journal of Pharmaceutical and Biomedical Analysis, v. 221.
1873-264X
0731-7085
10.1016/j.jpba.2022.115021
2-s2.0-85137756793
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Pharmaceutical and Biomedical Analysis
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128189543743488