Using infrared spectroscopy of serum and chemometrics for diagnosis of paracoccidioidomycosis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.jpba.2022.115021 http://hdl.handle.net/11449/249140 |
Resumo: | Paracoccidioidomycosis (PCM) is a systemic granulomatous mycosis endemic to Latin America, whose etiologic agents are fungi of the genus Paracoccidioides. PCM is usually diagnosed by microscopic observation of the fungus in biological samples, combined or not with other techniques such as serological methods. However, all currently used diagnostic methods have limitations. The objective of this study was to develop a method based on Fourier transform infrared spectroscopy (FTIR) and chemometric analysis for PCM diagnosis. We included 224 serum samples: 132 PCM sera, 24 aspergillosis sera, 10 cryptococcosis sera, 8 histoplasmosis sera, and 50 sera from healthy blood donors. Samples were analyzed by attenuated total reflection (ATR), and chemometric analyses including exploratory analysis through principal component analysis (PCA) and a classification method (PCM and non-PCM) through orthogonal partial least squares discriminant analysis (OPLS-DA). The spectra were similar, with the main bands up to approximately 1652 cm–1 and 1543 cm–1 (amide I and amide II bands). This same region was mainly responsible for the partial separation of the samples in PCA. The OPLS-DA model correctly classified all serum samples with only one latent variable, with a determination coefficient (R²) higher than 0.999 for both the calibration set and prediction set. Sensitivity and specificity were 100% for both sets, showing better performance than the reference diagnostic methods. Therefore, the use of FTIR/ATR together with OPLS-DA modeling proved to be a promising method for PCM diagnosis. |
id |
UNSP_3cf15ac2934da208731c2c4c7e476a88 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/249140 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Using infrared spectroscopy of serum and chemometrics for diagnosis of paracoccidioidomycosisFourier transform infrared spectroscopyMultivariate analysisOrthogonal partial least squares discriminant analysisParacoccidioidomycosisPhotodiagnosisSystemic mycosisParacoccidioidomycosis (PCM) is a systemic granulomatous mycosis endemic to Latin America, whose etiologic agents are fungi of the genus Paracoccidioides. PCM is usually diagnosed by microscopic observation of the fungus in biological samples, combined or not with other techniques such as serological methods. However, all currently used diagnostic methods have limitations. The objective of this study was to develop a method based on Fourier transform infrared spectroscopy (FTIR) and chemometric analysis for PCM diagnosis. We included 224 serum samples: 132 PCM sera, 24 aspergillosis sera, 10 cryptococcosis sera, 8 histoplasmosis sera, and 50 sera from healthy blood donors. Samples were analyzed by attenuated total reflection (ATR), and chemometric analyses including exploratory analysis through principal component analysis (PCA) and a classification method (PCM and non-PCM) through orthogonal partial least squares discriminant analysis (OPLS-DA). The spectra were similar, with the main bands up to approximately 1652 cm–1 and 1543 cm–1 (amide I and amide II bands). This same region was mainly responsible for the partial separation of the samples in PCA. The OPLS-DA model correctly classified all serum samples with only one latent variable, with a determination coefficient (R²) higher than 0.999 for both the calibration set and prediction set. Sensitivity and specificity were 100% for both sets, showing better performance than the reference diagnostic methods. Therefore, the use of FTIR/ATR together with OPLS-DA modeling proved to be a promising method for PCM diagnosis.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Postgraduate Program of Medicine: Medical Sciences Universidade Federal do Rio Grande do Sul - UFRGSDepartment of Microbiology Immunology and Parasitology ICBS Universidade Federal do Rio Grande do Sul - UFRGSTropical Diseases Area School of Medicine Universidade Estadual Paulista - UNESPDepartment of Life Sciences Universidade de Santa Cruz do Sul - UNISCDepartment of Sciences Humanities and Education Postgraduate Program in Health Promotion Postgraduate Program in Environmental Technology Universidade de Santa Cruz do Sul - UNISCTropical Diseases Area School of Medicine Universidade Estadual Paulista - UNESPCNPq: 442448/2019-8Universidade Federal do Rio Grande do Sul - UFRGSUniversidade Estadual Paulista (UNESP)Universidade de Santa Cruz do Sul - UNISCKoehler, AlessandraScroferneker, Maria LúciaPereira, Beatriz Aparecida Soares [UNESP]Pereira de Souza, Nikolas Mateusde Souza Cavalcante, Ricardo [UNESP]Mendes, Rinaldo Pôncio [UNESP]Corbellini, Valeriano Antonio2023-07-29T14:03:32Z2023-07-29T14:03:32Z2022-11-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1016/j.jpba.2022.115021Journal of Pharmaceutical and Biomedical Analysis, v. 221.1873-264X0731-7085http://hdl.handle.net/11449/24914010.1016/j.jpba.2022.1150212-s2.0-85137756793Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Pharmaceutical and Biomedical Analysisinfo:eu-repo/semantics/openAccess2024-08-15T15:23:15Zoai:repositorio.unesp.br:11449/249140Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-15T15:23:15Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Using infrared spectroscopy of serum and chemometrics for diagnosis of paracoccidioidomycosis |
title |
Using infrared spectroscopy of serum and chemometrics for diagnosis of paracoccidioidomycosis |
spellingShingle |
Using infrared spectroscopy of serum and chemometrics for diagnosis of paracoccidioidomycosis Koehler, Alessandra Fourier transform infrared spectroscopy Multivariate analysis Orthogonal partial least squares discriminant analysis Paracoccidioidomycosis Photodiagnosis Systemic mycosis |
title_short |
Using infrared spectroscopy of serum and chemometrics for diagnosis of paracoccidioidomycosis |
title_full |
Using infrared spectroscopy of serum and chemometrics for diagnosis of paracoccidioidomycosis |
title_fullStr |
Using infrared spectroscopy of serum and chemometrics for diagnosis of paracoccidioidomycosis |
title_full_unstemmed |
Using infrared spectroscopy of serum and chemometrics for diagnosis of paracoccidioidomycosis |
title_sort |
Using infrared spectroscopy of serum and chemometrics for diagnosis of paracoccidioidomycosis |
author |
Koehler, Alessandra |
author_facet |
Koehler, Alessandra Scroferneker, Maria Lúcia Pereira, Beatriz Aparecida Soares [UNESP] Pereira de Souza, Nikolas Mateus de Souza Cavalcante, Ricardo [UNESP] Mendes, Rinaldo Pôncio [UNESP] Corbellini, Valeriano Antonio |
author_role |
author |
author2 |
Scroferneker, Maria Lúcia Pereira, Beatriz Aparecida Soares [UNESP] Pereira de Souza, Nikolas Mateus de Souza Cavalcante, Ricardo [UNESP] Mendes, Rinaldo Pôncio [UNESP] Corbellini, Valeriano Antonio |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Federal do Rio Grande do Sul - UFRGS Universidade Estadual Paulista (UNESP) Universidade de Santa Cruz do Sul - UNISC |
dc.contributor.author.fl_str_mv |
Koehler, Alessandra Scroferneker, Maria Lúcia Pereira, Beatriz Aparecida Soares [UNESP] Pereira de Souza, Nikolas Mateus de Souza Cavalcante, Ricardo [UNESP] Mendes, Rinaldo Pôncio [UNESP] Corbellini, Valeriano Antonio |
dc.subject.por.fl_str_mv |
Fourier transform infrared spectroscopy Multivariate analysis Orthogonal partial least squares discriminant analysis Paracoccidioidomycosis Photodiagnosis Systemic mycosis |
topic |
Fourier transform infrared spectroscopy Multivariate analysis Orthogonal partial least squares discriminant analysis Paracoccidioidomycosis Photodiagnosis Systemic mycosis |
description |
Paracoccidioidomycosis (PCM) is a systemic granulomatous mycosis endemic to Latin America, whose etiologic agents are fungi of the genus Paracoccidioides. PCM is usually diagnosed by microscopic observation of the fungus in biological samples, combined or not with other techniques such as serological methods. However, all currently used diagnostic methods have limitations. The objective of this study was to develop a method based on Fourier transform infrared spectroscopy (FTIR) and chemometric analysis for PCM diagnosis. We included 224 serum samples: 132 PCM sera, 24 aspergillosis sera, 10 cryptococcosis sera, 8 histoplasmosis sera, and 50 sera from healthy blood donors. Samples were analyzed by attenuated total reflection (ATR), and chemometric analyses including exploratory analysis through principal component analysis (PCA) and a classification method (PCM and non-PCM) through orthogonal partial least squares discriminant analysis (OPLS-DA). The spectra were similar, with the main bands up to approximately 1652 cm–1 and 1543 cm–1 (amide I and amide II bands). This same region was mainly responsible for the partial separation of the samples in PCA. The OPLS-DA model correctly classified all serum samples with only one latent variable, with a determination coefficient (R²) higher than 0.999 for both the calibration set and prediction set. Sensitivity and specificity were 100% for both sets, showing better performance than the reference diagnostic methods. Therefore, the use of FTIR/ATR together with OPLS-DA modeling proved to be a promising method for PCM diagnosis. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-11-30 2023-07-29T14:03:32Z 2023-07-29T14:03:32Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.jpba.2022.115021 Journal of Pharmaceutical and Biomedical Analysis, v. 221. 1873-264X 0731-7085 http://hdl.handle.net/11449/249140 10.1016/j.jpba.2022.115021 2-s2.0-85137756793 |
url |
http://dx.doi.org/10.1016/j.jpba.2022.115021 http://hdl.handle.net/11449/249140 |
identifier_str_mv |
Journal of Pharmaceutical and Biomedical Analysis, v. 221. 1873-264X 0731-7085 10.1016/j.jpba.2022.115021 2-s2.0-85137756793 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal of Pharmaceutical and Biomedical Analysis |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128189543743488 |