Electrostatic interaction optimization improves catalytic rates and thermotolerance on xylanases

Detalhes bibliográficos
Autor(a) principal: Contessoto, Vinicius de Godoi [UNESP]
Data de Publicação: 2021
Outros Autores: Ramos, Felipe Cardoso, Melo, Ricardo Rodrigues de, Oliveira, Vinicius Martins de, Scarpassa, Josiane Aniele, Sousa, Amanda Silva de, Zanphorlin, Leticia Maria, Slade, Gabriel Gouvea, Pereira Leite, Vitor Barbanti [UNESP], Ruller, Roberto
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.bpj.2021.03.036
http://hdl.handle.net/11449/210398
Resumo: Understanding the aspects that contribute to improving proteins' biochemical properties is of high relevance for protein engineering. Properties such as the catalytic rate, thermal stability, and thermal resistance are crucial for applying enzymes in the industry. Different interactions can influence those biochemical properties of an enzyme. Among them, the surface charge-charge interactions have been a target of particular attention. In this study, we employ the Tanford-Kirkwood solvent accessibility model using the Monte Carlo algorithm (TKSA-MC) to predict possible interactions that could improve stability and catalytic rate of a WT xylanase (XynA(WT)) and its M6 xylanase (XynA(M6)) mutant. The modeling prediction indicates that mutating from a lysine in position 99 to a glutamic acid (K99E) favors the native state stabilization in both xylanases. Our lab results showed that mutated xylanases had their thermotolerance and catalytic rate increased, which conferred higher processivity of delignified sugarcane bagasse. The TKSA-MC approach employed here is presented as an efficient computational-based design strategy that can be applied to improve the thermal resistance of enzymes with industrial and biotechnological applications.
id UNSP_3eda27276744e69a5e503542f08afe8f
oai_identifier_str oai:repositorio.unesp.br:11449/210398
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Electrostatic interaction optimization improves catalytic rates and thermotolerance on xylanasesUnderstanding the aspects that contribute to improving proteins' biochemical properties is of high relevance for protein engineering. Properties such as the catalytic rate, thermal stability, and thermal resistance are crucial for applying enzymes in the industry. Different interactions can influence those biochemical properties of an enzyme. Among them, the surface charge-charge interactions have been a target of particular attention. In this study, we employ the Tanford-Kirkwood solvent accessibility model using the Monte Carlo algorithm (TKSA-MC) to predict possible interactions that could improve stability and catalytic rate of a WT xylanase (XynA(WT)) and its M6 xylanase (XynA(M6)) mutant. The modeling prediction indicates that mutating from a lysine in position 99 to a glutamic acid (K99E) favors the native state stabilization in both xylanases. Our lab results showed that mutated xylanases had their thermotolerance and catalytic rate increased, which conferred higher processivity of delignified sugarcane bagasse. The TKSA-MC approach employed here is presented as an efficient computational-based design strategy that can be applied to improve the thermal resistance of enzymes with industrial and biotechnological applications.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Brazilian Ctr Res Energy & Mat, Brazilian Biorenewables Natl Lab, Campinas, SP, BrazilRice Univ, Ctr Theoret Biol Phys, Houston, TX USASao Paulo State Univ, Inst Biosci Letters & Exact Sci, Dept Phys, Sao Jose Do Rio Preto, SP, BrazilBrazilian Ctr Res Energy & Mat, Brazilian Biosci Natl Lab, Campinas, SP, BrazilUniv Fed Triangulo Mineiro, Inst Exact Sci Nat & Educ, Theoret Biophys Lab, Uberaba, MG, BrazilUniv Fed Mato Grosso do Sul, Inst Biosci, Microorganisms & Gen Biochem Lab, Campo Grande, MS, BrazilSao Paulo State Univ, Inst Biosci Letters & Exact Sci, Dept Phys, Sao Jose Do Rio Preto, SP, BrazilFAPESP: 2016/13998-8FAPESP: 2017/09662-7CNPq: 141985/2013-5FAPESP: 2017/14253-9FAPESP: 2018/11614-3FAPESP: 2014/06862-7FAPESP: 2016/19766-1FAPESP: 2019/22540-3CNPq: 429829/2016-7Cell PressBrazilian Ctr Res Energy & MatRice UnivUniversidade Estadual Paulista (Unesp)Univ Fed Triangulo MineiroUniversidade Federal de Mato Grosso do Sul (UFMS)Contessoto, Vinicius de Godoi [UNESP]Ramos, Felipe CardosoMelo, Ricardo Rodrigues deOliveira, Vinicius Martins deScarpassa, Josiane AnieleSousa, Amanda Silva deZanphorlin, Leticia MariaSlade, Gabriel GouveaPereira Leite, Vitor Barbanti [UNESP]Ruller, Roberto2021-06-25T15:07:21Z2021-06-25T15:07:21Z2021-06-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article2172-2180http://dx.doi.org/10.1016/j.bpj.2021.03.036Biophysical Journal. Cambridge: Cell Press, v. 120, n. 11, p. 2172-2180, 2021.0006-3495http://hdl.handle.net/11449/21039810.1016/j.bpj.2021.03.036WOS:000658195300009Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengBiophysical Journalinfo:eu-repo/semantics/openAccess2021-10-23T20:17:27Zoai:repositorio.unesp.br:11449/210398Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:38:03.530871Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Electrostatic interaction optimization improves catalytic rates and thermotolerance on xylanases
title Electrostatic interaction optimization improves catalytic rates and thermotolerance on xylanases
spellingShingle Electrostatic interaction optimization improves catalytic rates and thermotolerance on xylanases
Contessoto, Vinicius de Godoi [UNESP]
title_short Electrostatic interaction optimization improves catalytic rates and thermotolerance on xylanases
title_full Electrostatic interaction optimization improves catalytic rates and thermotolerance on xylanases
title_fullStr Electrostatic interaction optimization improves catalytic rates and thermotolerance on xylanases
title_full_unstemmed Electrostatic interaction optimization improves catalytic rates and thermotolerance on xylanases
title_sort Electrostatic interaction optimization improves catalytic rates and thermotolerance on xylanases
author Contessoto, Vinicius de Godoi [UNESP]
author_facet Contessoto, Vinicius de Godoi [UNESP]
Ramos, Felipe Cardoso
Melo, Ricardo Rodrigues de
Oliveira, Vinicius Martins de
Scarpassa, Josiane Aniele
Sousa, Amanda Silva de
Zanphorlin, Leticia Maria
Slade, Gabriel Gouvea
Pereira Leite, Vitor Barbanti [UNESP]
Ruller, Roberto
author_role author
author2 Ramos, Felipe Cardoso
Melo, Ricardo Rodrigues de
Oliveira, Vinicius Martins de
Scarpassa, Josiane Aniele
Sousa, Amanda Silva de
Zanphorlin, Leticia Maria
Slade, Gabriel Gouvea
Pereira Leite, Vitor Barbanti [UNESP]
Ruller, Roberto
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Brazilian Ctr Res Energy & Mat
Rice Univ
Universidade Estadual Paulista (Unesp)
Univ Fed Triangulo Mineiro
Universidade Federal de Mato Grosso do Sul (UFMS)
dc.contributor.author.fl_str_mv Contessoto, Vinicius de Godoi [UNESP]
Ramos, Felipe Cardoso
Melo, Ricardo Rodrigues de
Oliveira, Vinicius Martins de
Scarpassa, Josiane Aniele
Sousa, Amanda Silva de
Zanphorlin, Leticia Maria
Slade, Gabriel Gouvea
Pereira Leite, Vitor Barbanti [UNESP]
Ruller, Roberto
description Understanding the aspects that contribute to improving proteins' biochemical properties is of high relevance for protein engineering. Properties such as the catalytic rate, thermal stability, and thermal resistance are crucial for applying enzymes in the industry. Different interactions can influence those biochemical properties of an enzyme. Among them, the surface charge-charge interactions have been a target of particular attention. In this study, we employ the Tanford-Kirkwood solvent accessibility model using the Monte Carlo algorithm (TKSA-MC) to predict possible interactions that could improve stability and catalytic rate of a WT xylanase (XynA(WT)) and its M6 xylanase (XynA(M6)) mutant. The modeling prediction indicates that mutating from a lysine in position 99 to a glutamic acid (K99E) favors the native state stabilization in both xylanases. Our lab results showed that mutated xylanases had their thermotolerance and catalytic rate increased, which conferred higher processivity of delignified sugarcane bagasse. The TKSA-MC approach employed here is presented as an efficient computational-based design strategy that can be applied to improve the thermal resistance of enzymes with industrial and biotechnological applications.
publishDate 2021
dc.date.none.fl_str_mv 2021-06-25T15:07:21Z
2021-06-25T15:07:21Z
2021-06-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.bpj.2021.03.036
Biophysical Journal. Cambridge: Cell Press, v. 120, n. 11, p. 2172-2180, 2021.
0006-3495
http://hdl.handle.net/11449/210398
10.1016/j.bpj.2021.03.036
WOS:000658195300009
url http://dx.doi.org/10.1016/j.bpj.2021.03.036
http://hdl.handle.net/11449/210398
identifier_str_mv Biophysical Journal. Cambridge: Cell Press, v. 120, n. 11, p. 2172-2180, 2021.
0006-3495
10.1016/j.bpj.2021.03.036
WOS:000658195300009
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Biophysical Journal
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 2172-2180
dc.publisher.none.fl_str_mv Cell Press
publisher.none.fl_str_mv Cell Press
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128681973907456