Electrostatic interaction optimization improves catalytic rates and thermotolerance on xylanases
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.bpj.2021.03.036 http://hdl.handle.net/11449/210398 |
Resumo: | Understanding the aspects that contribute to improving proteins' biochemical properties is of high relevance for protein engineering. Properties such as the catalytic rate, thermal stability, and thermal resistance are crucial for applying enzymes in the industry. Different interactions can influence those biochemical properties of an enzyme. Among them, the surface charge-charge interactions have been a target of particular attention. In this study, we employ the Tanford-Kirkwood solvent accessibility model using the Monte Carlo algorithm (TKSA-MC) to predict possible interactions that could improve stability and catalytic rate of a WT xylanase (XynA(WT)) and its M6 xylanase (XynA(M6)) mutant. The modeling prediction indicates that mutating from a lysine in position 99 to a glutamic acid (K99E) favors the native state stabilization in both xylanases. Our lab results showed that mutated xylanases had their thermotolerance and catalytic rate increased, which conferred higher processivity of delignified sugarcane bagasse. The TKSA-MC approach employed here is presented as an efficient computational-based design strategy that can be applied to improve the thermal resistance of enzymes with industrial and biotechnological applications. |
id |
UNSP_3eda27276744e69a5e503542f08afe8f |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/210398 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Electrostatic interaction optimization improves catalytic rates and thermotolerance on xylanasesUnderstanding the aspects that contribute to improving proteins' biochemical properties is of high relevance for protein engineering. Properties such as the catalytic rate, thermal stability, and thermal resistance are crucial for applying enzymes in the industry. Different interactions can influence those biochemical properties of an enzyme. Among them, the surface charge-charge interactions have been a target of particular attention. In this study, we employ the Tanford-Kirkwood solvent accessibility model using the Monte Carlo algorithm (TKSA-MC) to predict possible interactions that could improve stability and catalytic rate of a WT xylanase (XynA(WT)) and its M6 xylanase (XynA(M6)) mutant. The modeling prediction indicates that mutating from a lysine in position 99 to a glutamic acid (K99E) favors the native state stabilization in both xylanases. Our lab results showed that mutated xylanases had their thermotolerance and catalytic rate increased, which conferred higher processivity of delignified sugarcane bagasse. The TKSA-MC approach employed here is presented as an efficient computational-based design strategy that can be applied to improve the thermal resistance of enzymes with industrial and biotechnological applications.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Brazilian Ctr Res Energy & Mat, Brazilian Biorenewables Natl Lab, Campinas, SP, BrazilRice Univ, Ctr Theoret Biol Phys, Houston, TX USASao Paulo State Univ, Inst Biosci Letters & Exact Sci, Dept Phys, Sao Jose Do Rio Preto, SP, BrazilBrazilian Ctr Res Energy & Mat, Brazilian Biosci Natl Lab, Campinas, SP, BrazilUniv Fed Triangulo Mineiro, Inst Exact Sci Nat & Educ, Theoret Biophys Lab, Uberaba, MG, BrazilUniv Fed Mato Grosso do Sul, Inst Biosci, Microorganisms & Gen Biochem Lab, Campo Grande, MS, BrazilSao Paulo State Univ, Inst Biosci Letters & Exact Sci, Dept Phys, Sao Jose Do Rio Preto, SP, BrazilFAPESP: 2016/13998-8FAPESP: 2017/09662-7CNPq: 141985/2013-5FAPESP: 2017/14253-9FAPESP: 2018/11614-3FAPESP: 2014/06862-7FAPESP: 2016/19766-1FAPESP: 2019/22540-3CNPq: 429829/2016-7Cell PressBrazilian Ctr Res Energy & MatRice UnivUniversidade Estadual Paulista (Unesp)Univ Fed Triangulo MineiroUniversidade Federal de Mato Grosso do Sul (UFMS)Contessoto, Vinicius de Godoi [UNESP]Ramos, Felipe CardosoMelo, Ricardo Rodrigues deOliveira, Vinicius Martins deScarpassa, Josiane AnieleSousa, Amanda Silva deZanphorlin, Leticia MariaSlade, Gabriel GouveaPereira Leite, Vitor Barbanti [UNESP]Ruller, Roberto2021-06-25T15:07:21Z2021-06-25T15:07:21Z2021-06-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article2172-2180http://dx.doi.org/10.1016/j.bpj.2021.03.036Biophysical Journal. Cambridge: Cell Press, v. 120, n. 11, p. 2172-2180, 2021.0006-3495http://hdl.handle.net/11449/21039810.1016/j.bpj.2021.03.036WOS:000658195300009Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengBiophysical Journalinfo:eu-repo/semantics/openAccess2021-10-23T20:17:27Zoai:repositorio.unesp.br:11449/210398Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:38:03.530871Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Electrostatic interaction optimization improves catalytic rates and thermotolerance on xylanases |
title |
Electrostatic interaction optimization improves catalytic rates and thermotolerance on xylanases |
spellingShingle |
Electrostatic interaction optimization improves catalytic rates and thermotolerance on xylanases Contessoto, Vinicius de Godoi [UNESP] |
title_short |
Electrostatic interaction optimization improves catalytic rates and thermotolerance on xylanases |
title_full |
Electrostatic interaction optimization improves catalytic rates and thermotolerance on xylanases |
title_fullStr |
Electrostatic interaction optimization improves catalytic rates and thermotolerance on xylanases |
title_full_unstemmed |
Electrostatic interaction optimization improves catalytic rates and thermotolerance on xylanases |
title_sort |
Electrostatic interaction optimization improves catalytic rates and thermotolerance on xylanases |
author |
Contessoto, Vinicius de Godoi [UNESP] |
author_facet |
Contessoto, Vinicius de Godoi [UNESP] Ramos, Felipe Cardoso Melo, Ricardo Rodrigues de Oliveira, Vinicius Martins de Scarpassa, Josiane Aniele Sousa, Amanda Silva de Zanphorlin, Leticia Maria Slade, Gabriel Gouvea Pereira Leite, Vitor Barbanti [UNESP] Ruller, Roberto |
author_role |
author |
author2 |
Ramos, Felipe Cardoso Melo, Ricardo Rodrigues de Oliveira, Vinicius Martins de Scarpassa, Josiane Aniele Sousa, Amanda Silva de Zanphorlin, Leticia Maria Slade, Gabriel Gouvea Pereira Leite, Vitor Barbanti [UNESP] Ruller, Roberto |
author2_role |
author author author author author author author author author |
dc.contributor.none.fl_str_mv |
Brazilian Ctr Res Energy & Mat Rice Univ Universidade Estadual Paulista (Unesp) Univ Fed Triangulo Mineiro Universidade Federal de Mato Grosso do Sul (UFMS) |
dc.contributor.author.fl_str_mv |
Contessoto, Vinicius de Godoi [UNESP] Ramos, Felipe Cardoso Melo, Ricardo Rodrigues de Oliveira, Vinicius Martins de Scarpassa, Josiane Aniele Sousa, Amanda Silva de Zanphorlin, Leticia Maria Slade, Gabriel Gouvea Pereira Leite, Vitor Barbanti [UNESP] Ruller, Roberto |
description |
Understanding the aspects that contribute to improving proteins' biochemical properties is of high relevance for protein engineering. Properties such as the catalytic rate, thermal stability, and thermal resistance are crucial for applying enzymes in the industry. Different interactions can influence those biochemical properties of an enzyme. Among them, the surface charge-charge interactions have been a target of particular attention. In this study, we employ the Tanford-Kirkwood solvent accessibility model using the Monte Carlo algorithm (TKSA-MC) to predict possible interactions that could improve stability and catalytic rate of a WT xylanase (XynA(WT)) and its M6 xylanase (XynA(M6)) mutant. The modeling prediction indicates that mutating from a lysine in position 99 to a glutamic acid (K99E) favors the native state stabilization in both xylanases. Our lab results showed that mutated xylanases had their thermotolerance and catalytic rate increased, which conferred higher processivity of delignified sugarcane bagasse. The TKSA-MC approach employed here is presented as an efficient computational-based design strategy that can be applied to improve the thermal resistance of enzymes with industrial and biotechnological applications. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06-25T15:07:21Z 2021-06-25T15:07:21Z 2021-06-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.bpj.2021.03.036 Biophysical Journal. Cambridge: Cell Press, v. 120, n. 11, p. 2172-2180, 2021. 0006-3495 http://hdl.handle.net/11449/210398 10.1016/j.bpj.2021.03.036 WOS:000658195300009 |
url |
http://dx.doi.org/10.1016/j.bpj.2021.03.036 http://hdl.handle.net/11449/210398 |
identifier_str_mv |
Biophysical Journal. Cambridge: Cell Press, v. 120, n. 11, p. 2172-2180, 2021. 0006-3495 10.1016/j.bpj.2021.03.036 WOS:000658195300009 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Biophysical Journal |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
2172-2180 |
dc.publisher.none.fl_str_mv |
Cell Press |
publisher.none.fl_str_mv |
Cell Press |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128681973907456 |