The influence of fabric architecture on impregnation behavior and void formation: Artificial neural network and statistical-based analysis

Detalhes bibliográficos
Autor(a) principal: Monticeli, Francisco M. [UNESP]
Data de Publicação: 2022
Outros Autores: Almeida, José Humberto S., Neves, Roberta M., Ornaghi, Heitor L., Trochu, François
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1002/pc.26578
http://hdl.handle.net/11449/223552
Resumo: This work proposes an approach combining artificial neural networks (ANN) with statistical models to predict injection processing conditions for four reinforcement architectures: plain weave, bidirectional noncrimp fabrics, unidirectional fabrics (Uni) and random fiber mats (Random). Key results allow evaluating the velocity of the flow front by combining processing parameters and creating a three-dimensional response surface based on a properly trained ANN. This investigation is based on a large number of experimental results. The key role played by some physical parameters was associated with predicting the impregnation behavior (velocity of the flow front) during resin injection. The main outcome aims to provide a better control of void content in terms of size and position to the four fibrous reinforcements considered.
id UNSP_3f05dd3fc1ceb13a0095194adb8f6066
oai_identifier_str oai:repositorio.unesp.br:11449/223552
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling The influence of fabric architecture on impregnation behavior and void formation: Artificial neural network and statistical-based analysisartificial neural networkpermeabilityresin transfer molding processvoid formationThis work proposes an approach combining artificial neural networks (ANN) with statistical models to predict injection processing conditions for four reinforcement architectures: plain weave, bidirectional noncrimp fabrics, unidirectional fabrics (Uni) and random fiber mats (Random). Key results allow evaluating the velocity of the flow front by combining processing parameters and creating a three-dimensional response surface based on a properly trained ANN. This investigation is based on a large number of experimental results. The key role played by some physical parameters was associated with predicting the impregnation behavior (velocity of the flow front) during resin injection. The main outcome aims to provide a better control of void content in terms of size and position to the four fibrous reinforcements considered.Department of Materials and Technology São Paulo State University, São pauloDepartment of Mechanical Engineering Aalto UniversityAdvanced Composites Research Group School of Mechanical and Aerospace Engineering Queen's University BelfastPPGE3M Federal University of Rio Grande do SulDepartment of Material Engineering Federal University for Latin American Integration (UNILA) Foz do IguaçuDepartment of Mechanical Engineering Research Center for High Performance Polymer and Composite Systems Polytechnique MontréalDepartment of Materials and Technology São Paulo State University, São pauloUniversidade Estadual Paulista (UNESP)Aalto UniversityQueen's University BelfastFederal University of Rio Grande do SulFederal University for Latin American Integration (UNILA) Foz do IguaçuPolytechnique MontréalMonticeli, Francisco M. [UNESP]Almeida, José Humberto S.Neves, Roberta M.Ornaghi, Heitor L.Trochu, François2022-04-28T19:51:23Z2022-04-28T19:51:23Z2022-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1002/pc.26578Polymer Composites.1548-05690272-8397http://hdl.handle.net/11449/22355210.1002/pc.265782-s2.0-85125595013Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPolymer Compositesinfo:eu-repo/semantics/openAccess2022-04-28T19:51:23Zoai:repositorio.unesp.br:11449/223552Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:05:33.275156Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv The influence of fabric architecture on impregnation behavior and void formation: Artificial neural network and statistical-based analysis
title The influence of fabric architecture on impregnation behavior and void formation: Artificial neural network and statistical-based analysis
spellingShingle The influence of fabric architecture on impregnation behavior and void formation: Artificial neural network and statistical-based analysis
Monticeli, Francisco M. [UNESP]
artificial neural network
permeability
resin transfer molding process
void formation
title_short The influence of fabric architecture on impregnation behavior and void formation: Artificial neural network and statistical-based analysis
title_full The influence of fabric architecture on impregnation behavior and void formation: Artificial neural network and statistical-based analysis
title_fullStr The influence of fabric architecture on impregnation behavior and void formation: Artificial neural network and statistical-based analysis
title_full_unstemmed The influence of fabric architecture on impregnation behavior and void formation: Artificial neural network and statistical-based analysis
title_sort The influence of fabric architecture on impregnation behavior and void formation: Artificial neural network and statistical-based analysis
author Monticeli, Francisco M. [UNESP]
author_facet Monticeli, Francisco M. [UNESP]
Almeida, José Humberto S.
Neves, Roberta M.
Ornaghi, Heitor L.
Trochu, François
author_role author
author2 Almeida, José Humberto S.
Neves, Roberta M.
Ornaghi, Heitor L.
Trochu, François
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
Aalto University
Queen's University Belfast
Federal University of Rio Grande do Sul
Federal University for Latin American Integration (UNILA) Foz do Iguaçu
Polytechnique Montréal
dc.contributor.author.fl_str_mv Monticeli, Francisco M. [UNESP]
Almeida, José Humberto S.
Neves, Roberta M.
Ornaghi, Heitor L.
Trochu, François
dc.subject.por.fl_str_mv artificial neural network
permeability
resin transfer molding process
void formation
topic artificial neural network
permeability
resin transfer molding process
void formation
description This work proposes an approach combining artificial neural networks (ANN) with statistical models to predict injection processing conditions for four reinforcement architectures: plain weave, bidirectional noncrimp fabrics, unidirectional fabrics (Uni) and random fiber mats (Random). Key results allow evaluating the velocity of the flow front by combining processing parameters and creating a three-dimensional response surface based on a properly trained ANN. This investigation is based on a large number of experimental results. The key role played by some physical parameters was associated with predicting the impregnation behavior (velocity of the flow front) during resin injection. The main outcome aims to provide a better control of void content in terms of size and position to the four fibrous reinforcements considered.
publishDate 2022
dc.date.none.fl_str_mv 2022-04-28T19:51:23Z
2022-04-28T19:51:23Z
2022-01-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1002/pc.26578
Polymer Composites.
1548-0569
0272-8397
http://hdl.handle.net/11449/223552
10.1002/pc.26578
2-s2.0-85125595013
url http://dx.doi.org/10.1002/pc.26578
http://hdl.handle.net/11449/223552
identifier_str_mv Polymer Composites.
1548-0569
0272-8397
10.1002/pc.26578
2-s2.0-85125595013
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Polymer Composites
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129489504305152