Dynamical Localization for Discrete Anderson Dirac Operators
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/s10955-017-1746-6 http://hdl.handle.net/11449/169502 |
Resumo: | We establish dynamical localization for random Dirac operators on the d-dimensional lattice, with d∈ {1 , 2 , 3 } , in the three usual regimes: large disorder, band edge and 1D. These operators are discrete versions of the continuous Dirac operators and consist in the sum of a discrete free Dirac operator with a random potential. The potential is a diagonal matrix formed by different scalar potentials, which are sequences of independent and identically distributed random variables according to an absolutely continuous probability measure with bounded density and of compact support. We prove the exponential decay of fractional moments of the Green function for such models in each of the above regimes, i.e., (j) throughout the spectrum at larger disorder, (jj) for energies near the band edges at arbitrary disorder and (jjj) in dimension one, for all energies in the spectrum and arbitrary disorder. Dynamical localization in theses regimes follows from the fractional moments method. The result in the one-dimensional regime contrast with one that was previously obtained for 1D Dirac model with Bernoulli potential. |
id |
UNSP_3f7efcb895d0a907f89b5f8fef4a55f8 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/169502 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Dynamical Localization for Discrete Anderson Dirac OperatorsAnderson Dirac operatorsDynamical localizationFractional moments methodWe establish dynamical localization for random Dirac operators on the d-dimensional lattice, with d∈ {1 , 2 , 3 } , in the three usual regimes: large disorder, band edge and 1D. These operators are discrete versions of the continuous Dirac operators and consist in the sum of a discrete free Dirac operator with a random potential. The potential is a diagonal matrix formed by different scalar potentials, which are sequences of independent and identically distributed random variables according to an absolutely continuous probability measure with bounded density and of compact support. We prove the exponential decay of fractional moments of the Green function for such models in each of the above regimes, i.e., (j) throughout the spectrum at larger disorder, (jj) for energies near the band edges at arbitrary disorder and (jjj) in dimension one, for all energies in the spectrum and arbitrary disorder. Dynamical localization in theses regimes follows from the fractional moments method. The result in the one-dimensional regime contrast with one that was previously obtained for 1D Dirac model with Bernoulli potential.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Departamento de Matemática UFSCDepartamento de Matemática UFSCarDepartamento de Matemática UFMGUNESPUNESPCNPq: 157873/2015-3CNPq: 441004/2014-8Universidade Federal de Santa Catarina (UFSC)Universidade Federal de São Carlos (UFSCar)Universidade Federal de Minas Gerais (UFMG)Universidade Estadual Paulista (Unesp)Prado, Roberto A. [UNESP]de Oliveira, César R.Carvalho, Silas L.2018-12-11T16:46:11Z2018-12-11T16:46:11Z2017-04-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article260-296application/pdfhttp://dx.doi.org/10.1007/s10955-017-1746-6Journal of Statistical Physics, v. 167, n. 2, p. 260-296, 2017.0022-4715http://hdl.handle.net/11449/16950210.1007/s10955-017-1746-62-s2.0-850140914762-s2.0-85014091476´.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Statistical Physics0,930info:eu-repo/semantics/openAccess2023-12-02T06:17:45Zoai:repositorio.unesp.br:11449/169502Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:20:28.971528Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Dynamical Localization for Discrete Anderson Dirac Operators |
title |
Dynamical Localization for Discrete Anderson Dirac Operators |
spellingShingle |
Dynamical Localization for Discrete Anderson Dirac Operators Prado, Roberto A. [UNESP] Anderson Dirac operators Dynamical localization Fractional moments method |
title_short |
Dynamical Localization for Discrete Anderson Dirac Operators |
title_full |
Dynamical Localization for Discrete Anderson Dirac Operators |
title_fullStr |
Dynamical Localization for Discrete Anderson Dirac Operators |
title_full_unstemmed |
Dynamical Localization for Discrete Anderson Dirac Operators |
title_sort |
Dynamical Localization for Discrete Anderson Dirac Operators |
author |
Prado, Roberto A. [UNESP] |
author_facet |
Prado, Roberto A. [UNESP] de Oliveira, César R. Carvalho, Silas L. |
author_role |
author |
author2 |
de Oliveira, César R. Carvalho, Silas L. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Federal de Santa Catarina (UFSC) Universidade Federal de São Carlos (UFSCar) Universidade Federal de Minas Gerais (UFMG) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Prado, Roberto A. [UNESP] de Oliveira, César R. Carvalho, Silas L. |
dc.subject.por.fl_str_mv |
Anderson Dirac operators Dynamical localization Fractional moments method |
topic |
Anderson Dirac operators Dynamical localization Fractional moments method |
description |
We establish dynamical localization for random Dirac operators on the d-dimensional lattice, with d∈ {1 , 2 , 3 } , in the three usual regimes: large disorder, band edge and 1D. These operators are discrete versions of the continuous Dirac operators and consist in the sum of a discrete free Dirac operator with a random potential. The potential is a diagonal matrix formed by different scalar potentials, which are sequences of independent and identically distributed random variables according to an absolutely continuous probability measure with bounded density and of compact support. We prove the exponential decay of fractional moments of the Green function for such models in each of the above regimes, i.e., (j) throughout the spectrum at larger disorder, (jj) for energies near the band edges at arbitrary disorder and (jjj) in dimension one, for all energies in the spectrum and arbitrary disorder. Dynamical localization in theses regimes follows from the fractional moments method. The result in the one-dimensional regime contrast with one that was previously obtained for 1D Dirac model with Bernoulli potential. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-04-01 2018-12-11T16:46:11Z 2018-12-11T16:46:11Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/s10955-017-1746-6 Journal of Statistical Physics, v. 167, n. 2, p. 260-296, 2017. 0022-4715 http://hdl.handle.net/11449/169502 10.1007/s10955-017-1746-6 2-s2.0-85014091476 2-s2.0-85014091476´.pdf |
url |
http://dx.doi.org/10.1007/s10955-017-1746-6 http://hdl.handle.net/11449/169502 |
identifier_str_mv |
Journal of Statistical Physics, v. 167, n. 2, p. 260-296, 2017. 0022-4715 10.1007/s10955-017-1746-6 2-s2.0-85014091476 2-s2.0-85014091476´.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal of Statistical Physics 0,930 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
260-296 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129054291787776 |