Dynamical Localization for Discrete Anderson Dirac Operators

Detalhes bibliográficos
Autor(a) principal: Prado, Roberto A. [UNESP]
Data de Publicação: 2017
Outros Autores: de Oliveira, César R., Carvalho, Silas L.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/s10955-017-1746-6
http://hdl.handle.net/11449/169502
Resumo: We establish dynamical localization for random Dirac operators on the d-dimensional lattice, with d∈ {1 , 2 , 3 } , in the three usual regimes: large disorder, band edge and 1D. These operators are discrete versions of the continuous Dirac operators and consist in the sum of a discrete free Dirac operator with a random potential. The potential is a diagonal matrix formed by different scalar potentials, which are sequences of independent and identically distributed random variables according to an absolutely continuous probability measure with bounded density and of compact support. We prove the exponential decay of fractional moments of the Green function for such models in each of the above regimes, i.e., (j) throughout the spectrum at larger disorder, (jj) for energies near the band edges at arbitrary disorder and (jjj) in dimension one, for all energies in the spectrum and arbitrary disorder. Dynamical localization in theses regimes follows from the fractional moments method. The result in the one-dimensional regime contrast with one that was previously obtained for 1D Dirac model with Bernoulli potential.
id UNSP_3f7efcb895d0a907f89b5f8fef4a55f8
oai_identifier_str oai:repositorio.unesp.br:11449/169502
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Dynamical Localization for Discrete Anderson Dirac OperatorsAnderson Dirac operatorsDynamical localizationFractional moments methodWe establish dynamical localization for random Dirac operators on the d-dimensional lattice, with d∈ {1 , 2 , 3 } , in the three usual regimes: large disorder, band edge and 1D. These operators are discrete versions of the continuous Dirac operators and consist in the sum of a discrete free Dirac operator with a random potential. The potential is a diagonal matrix formed by different scalar potentials, which are sequences of independent and identically distributed random variables according to an absolutely continuous probability measure with bounded density and of compact support. We prove the exponential decay of fractional moments of the Green function for such models in each of the above regimes, i.e., (j) throughout the spectrum at larger disorder, (jj) for energies near the band edges at arbitrary disorder and (jjj) in dimension one, for all energies in the spectrum and arbitrary disorder. Dynamical localization in theses regimes follows from the fractional moments method. The result in the one-dimensional regime contrast with one that was previously obtained for 1D Dirac model with Bernoulli potential.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Departamento de Matemática UFSCDepartamento de Matemática UFSCarDepartamento de Matemática UFMGUNESPUNESPCNPq: 157873/2015-3CNPq: 441004/2014-8Universidade Federal de Santa Catarina (UFSC)Universidade Federal de São Carlos (UFSCar)Universidade Federal de Minas Gerais (UFMG)Universidade Estadual Paulista (Unesp)Prado, Roberto A. [UNESP]de Oliveira, César R.Carvalho, Silas L.2018-12-11T16:46:11Z2018-12-11T16:46:11Z2017-04-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article260-296application/pdfhttp://dx.doi.org/10.1007/s10955-017-1746-6Journal of Statistical Physics, v. 167, n. 2, p. 260-296, 2017.0022-4715http://hdl.handle.net/11449/16950210.1007/s10955-017-1746-62-s2.0-850140914762-s2.0-85014091476´.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Statistical Physics0,930info:eu-repo/semantics/openAccess2023-12-02T06:17:45Zoai:repositorio.unesp.br:11449/169502Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:20:28.971528Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Dynamical Localization for Discrete Anderson Dirac Operators
title Dynamical Localization for Discrete Anderson Dirac Operators
spellingShingle Dynamical Localization for Discrete Anderson Dirac Operators
Prado, Roberto A. [UNESP]
Anderson Dirac operators
Dynamical localization
Fractional moments method
title_short Dynamical Localization for Discrete Anderson Dirac Operators
title_full Dynamical Localization for Discrete Anderson Dirac Operators
title_fullStr Dynamical Localization for Discrete Anderson Dirac Operators
title_full_unstemmed Dynamical Localization for Discrete Anderson Dirac Operators
title_sort Dynamical Localization for Discrete Anderson Dirac Operators
author Prado, Roberto A. [UNESP]
author_facet Prado, Roberto A. [UNESP]
de Oliveira, César R.
Carvalho, Silas L.
author_role author
author2 de Oliveira, César R.
Carvalho, Silas L.
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Federal de Santa Catarina (UFSC)
Universidade Federal de São Carlos (UFSCar)
Universidade Federal de Minas Gerais (UFMG)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Prado, Roberto A. [UNESP]
de Oliveira, César R.
Carvalho, Silas L.
dc.subject.por.fl_str_mv Anderson Dirac operators
Dynamical localization
Fractional moments method
topic Anderson Dirac operators
Dynamical localization
Fractional moments method
description We establish dynamical localization for random Dirac operators on the d-dimensional lattice, with d∈ {1 , 2 , 3 } , in the three usual regimes: large disorder, band edge and 1D. These operators are discrete versions of the continuous Dirac operators and consist in the sum of a discrete free Dirac operator with a random potential. The potential is a diagonal matrix formed by different scalar potentials, which are sequences of independent and identically distributed random variables according to an absolutely continuous probability measure with bounded density and of compact support. We prove the exponential decay of fractional moments of the Green function for such models in each of the above regimes, i.e., (j) throughout the spectrum at larger disorder, (jj) for energies near the band edges at arbitrary disorder and (jjj) in dimension one, for all energies in the spectrum and arbitrary disorder. Dynamical localization in theses regimes follows from the fractional moments method. The result in the one-dimensional regime contrast with one that was previously obtained for 1D Dirac model with Bernoulli potential.
publishDate 2017
dc.date.none.fl_str_mv 2017-04-01
2018-12-11T16:46:11Z
2018-12-11T16:46:11Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s10955-017-1746-6
Journal of Statistical Physics, v. 167, n. 2, p. 260-296, 2017.
0022-4715
http://hdl.handle.net/11449/169502
10.1007/s10955-017-1746-6
2-s2.0-85014091476
2-s2.0-85014091476´.pdf
url http://dx.doi.org/10.1007/s10955-017-1746-6
http://hdl.handle.net/11449/169502
identifier_str_mv Journal of Statistical Physics, v. 167, n. 2, p. 260-296, 2017.
0022-4715
10.1007/s10955-017-1746-6
2-s2.0-85014091476
2-s2.0-85014091476´.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Statistical Physics
0,930
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 260-296
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129054291787776