Electrically Tunable Gauge Fields in Tiny-Angle Twisted Bilayer Graphene

Detalhes bibliográficos
Autor(a) principal: Ramires, Aline [UNESP]
Data de Publicação: 2018
Outros Autores: Lado, Jose L.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1103/PhysRevLett.121.146801
http://hdl.handle.net/11449/188170
Resumo: Twisted bilayer graphene has recently attracted a lot of attention for its rich electronic properties and tunability. Here we show that for very small twist angles, α1°, the application of a perpendicular electric field is mathematically equivalent to a new kind of artificial gauge field. This identification opens the door for the generation and detection of pseudo-Landau levels in graphene platforms within robust setups, which do not depend on strain engineering and therefore can be realistically harvested for technological applications. Furthermore, this new artificial gauge field leads to the development of highly localized modes associated with flat bands close to charge neutrality, which form an emergent kagome lattice in real space. Our findings indicate that for tiny angles biased twisted bilayer graphene is a promising platform that can realize frustrated lattices of highly localized states, opening a new direction for the investigation of strongly correlated phases of matter.
id UNSP_4012727e2c2de0198130eeef3b5943f5
oai_identifier_str oai:repositorio.unesp.br:11449/188170
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Electrically Tunable Gauge Fields in Tiny-Angle Twisted Bilayer GrapheneTwisted bilayer graphene has recently attracted a lot of attention for its rich electronic properties and tunability. Here we show that for very small twist angles, α1°, the application of a perpendicular electric field is mathematically equivalent to a new kind of artificial gauge field. This identification opens the door for the generation and detection of pseudo-Landau levels in graphene platforms within robust setups, which do not depend on strain engineering and therefore can be realistically harvested for technological applications. Furthermore, this new artificial gauge field leads to the development of highly localized modes associated with flat bands close to charge neutrality, which form an emergent kagome lattice in real space. Our findings indicate that for tiny angles biased twisted bilayer graphene is a promising platform that can realize frustrated lattices of highly localized states, opening a new direction for the investigation of strongly correlated phases of matter.Institute for Theoretical Studies ETH ZurichInstitute for Theoretical Physics ETH ZurichICTP South American Institute for Fundamental Research Instituto de Física Teórica UNESPICTP South American Institute for Fundamental Research Instituto de Física Teórica UNESPETH ZurichUniversidade Estadual Paulista (Unesp)Ramires, Aline [UNESP]Lado, Jose L.2019-10-06T15:59:33Z2019-10-06T15:59:33Z2018-10-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1103/PhysRevLett.121.146801Physical Review Letters, v. 121, n. 14, 2018.1079-71140031-9007http://hdl.handle.net/11449/18817010.1103/PhysRevLett.121.1468012-s2.0-85054520501Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysical Review Lettersinfo:eu-repo/semantics/openAccess2021-10-23T19:02:01Zoai:repositorio.unesp.br:11449/188170Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462021-10-23T19:02:01Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Electrically Tunable Gauge Fields in Tiny-Angle Twisted Bilayer Graphene
title Electrically Tunable Gauge Fields in Tiny-Angle Twisted Bilayer Graphene
spellingShingle Electrically Tunable Gauge Fields in Tiny-Angle Twisted Bilayer Graphene
Ramires, Aline [UNESP]
title_short Electrically Tunable Gauge Fields in Tiny-Angle Twisted Bilayer Graphene
title_full Electrically Tunable Gauge Fields in Tiny-Angle Twisted Bilayer Graphene
title_fullStr Electrically Tunable Gauge Fields in Tiny-Angle Twisted Bilayer Graphene
title_full_unstemmed Electrically Tunable Gauge Fields in Tiny-Angle Twisted Bilayer Graphene
title_sort Electrically Tunable Gauge Fields in Tiny-Angle Twisted Bilayer Graphene
author Ramires, Aline [UNESP]
author_facet Ramires, Aline [UNESP]
Lado, Jose L.
author_role author
author2 Lado, Jose L.
author2_role author
dc.contributor.none.fl_str_mv ETH Zurich
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Ramires, Aline [UNESP]
Lado, Jose L.
description Twisted bilayer graphene has recently attracted a lot of attention for its rich electronic properties and tunability. Here we show that for very small twist angles, α1°, the application of a perpendicular electric field is mathematically equivalent to a new kind of artificial gauge field. This identification opens the door for the generation and detection of pseudo-Landau levels in graphene platforms within robust setups, which do not depend on strain engineering and therefore can be realistically harvested for technological applications. Furthermore, this new artificial gauge field leads to the development of highly localized modes associated with flat bands close to charge neutrality, which form an emergent kagome lattice in real space. Our findings indicate that for tiny angles biased twisted bilayer graphene is a promising platform that can realize frustrated lattices of highly localized states, opening a new direction for the investigation of strongly correlated phases of matter.
publishDate 2018
dc.date.none.fl_str_mv 2018-10-01
2019-10-06T15:59:33Z
2019-10-06T15:59:33Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1103/PhysRevLett.121.146801
Physical Review Letters, v. 121, n. 14, 2018.
1079-7114
0031-9007
http://hdl.handle.net/11449/188170
10.1103/PhysRevLett.121.146801
2-s2.0-85054520501
url http://dx.doi.org/10.1103/PhysRevLett.121.146801
http://hdl.handle.net/11449/188170
identifier_str_mv Physical Review Letters, v. 121, n. 14, 2018.
1079-7114
0031-9007
10.1103/PhysRevLett.121.146801
2-s2.0-85054520501
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Physical Review Letters
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1803046864774234112