Distribution network reconfiguration using an efficient evolutionary algorithm
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/PES.2007.385648 http://hdl.handle.net/11449/70030 |
Resumo: | Network reconfiguration is an important tool to optimize the operating conditions of a distribution system. This is accomplished modifying the network structure of distribution feeders by changing the open/close status of sectionalizing switches. This not only reduces the power losses, but also relieves the overloading of the network components. Network reconfiguration belongs to a complex family of problems because of their combinatorial nature and multiple constraints. This paper proposes a solution to this problem, using a specialized evolutionary algorithm, with a novel codification, and a brand new way of implement the genetic operators considering the problem characteristics. The algorithm is presented and tested in a real distribution system, showing excellent results and computational efficiency. © 2007 IEEE. |
id |
UNSP_41ee5d60ebae0d05a63c4a36cd577c7f |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/70030 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Distribution network reconfiguration using an efficient evolutionary algorithmDistribution network reconfigurationGenetic algorithmsLoss reductionMetaheuristicsNetwork representationElectric lossesProblem solvingSwitchesGenetic operatorsNetwork reconfigurationNetwork structureElectric power distributionNetwork reconfiguration is an important tool to optimize the operating conditions of a distribution system. This is accomplished modifying the network structure of distribution feeders by changing the open/close status of sectionalizing switches. This not only reduces the power losses, but also relieves the overloading of the network components. Network reconfiguration belongs to a complex family of problems because of their combinatorial nature and multiple constraints. This paper proposes a solution to this problem, using a specialized evolutionary algorithm, with a novel codification, and a brand new way of implement the genetic operators considering the problem characteristics. The algorithm is presented and tested in a real distribution system, showing excellent results and computational efficiency. © 2007 IEEE.IEEEUniversidade Estadual Paulista (UNESP) Ilha Solteira, SPUniversidade Estadual Paulista (UNESP) Ilha Solteira, SPUniversidade Estadual Paulista (Unesp)Carreno, E. M.Moreira, N. [UNESP]Romero, R. [UNESP]2014-05-27T11:22:40Z2014-05-27T11:22:40Z2007-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.1109/PES.2007.385648IEEE Power Engineering Society General Meeting, Vols 1-10. New York: IEEE, p. 288-293, 2007.http://hdl.handle.net/11449/7003010.1109/PES.2007.385648WOS:0002513454000582-s2.0-42549159480Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2007 IEEE Power Engineering Society General Meeting, PESinfo:eu-repo/semantics/openAccess2021-10-23T21:41:22Zoai:repositorio.unesp.br:11449/70030Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:33:46.221668Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Distribution network reconfiguration using an efficient evolutionary algorithm |
title |
Distribution network reconfiguration using an efficient evolutionary algorithm |
spellingShingle |
Distribution network reconfiguration using an efficient evolutionary algorithm Carreno, E. M. Distribution network reconfiguration Genetic algorithms Loss reduction Metaheuristics Network representation Electric losses Problem solving Switches Genetic operators Network reconfiguration Network structure Electric power distribution |
title_short |
Distribution network reconfiguration using an efficient evolutionary algorithm |
title_full |
Distribution network reconfiguration using an efficient evolutionary algorithm |
title_fullStr |
Distribution network reconfiguration using an efficient evolutionary algorithm |
title_full_unstemmed |
Distribution network reconfiguration using an efficient evolutionary algorithm |
title_sort |
Distribution network reconfiguration using an efficient evolutionary algorithm |
author |
Carreno, E. M. |
author_facet |
Carreno, E. M. Moreira, N. [UNESP] Romero, R. [UNESP] |
author_role |
author |
author2 |
Moreira, N. [UNESP] Romero, R. [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Carreno, E. M. Moreira, N. [UNESP] Romero, R. [UNESP] |
dc.subject.por.fl_str_mv |
Distribution network reconfiguration Genetic algorithms Loss reduction Metaheuristics Network representation Electric losses Problem solving Switches Genetic operators Network reconfiguration Network structure Electric power distribution |
topic |
Distribution network reconfiguration Genetic algorithms Loss reduction Metaheuristics Network representation Electric losses Problem solving Switches Genetic operators Network reconfiguration Network structure Electric power distribution |
description |
Network reconfiguration is an important tool to optimize the operating conditions of a distribution system. This is accomplished modifying the network structure of distribution feeders by changing the open/close status of sectionalizing switches. This not only reduces the power losses, but also relieves the overloading of the network components. Network reconfiguration belongs to a complex family of problems because of their combinatorial nature and multiple constraints. This paper proposes a solution to this problem, using a specialized evolutionary algorithm, with a novel codification, and a brand new way of implement the genetic operators considering the problem characteristics. The algorithm is presented and tested in a real distribution system, showing excellent results and computational efficiency. © 2007 IEEE. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-12-01 2014-05-27T11:22:40Z 2014-05-27T11:22:40Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/PES.2007.385648 IEEE Power Engineering Society General Meeting, Vols 1-10. New York: IEEE, p. 288-293, 2007. http://hdl.handle.net/11449/70030 10.1109/PES.2007.385648 WOS:000251345400058 2-s2.0-42549159480 |
url |
http://dx.doi.org/10.1109/PES.2007.385648 http://hdl.handle.net/11449/70030 |
identifier_str_mv |
IEEE Power Engineering Society General Meeting, Vols 1-10. New York: IEEE, p. 288-293, 2007. 10.1109/PES.2007.385648 WOS:000251345400058 2-s2.0-42549159480 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2007 IEEE Power Engineering Society General Meeting, PES |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128826990919680 |