Distribution network reconfiguration using an efficient evolutionary algorithm

Detalhes bibliográficos
Autor(a) principal: Carreno, E. M.
Data de Publicação: 2007
Outros Autores: Moreira, N. [UNESP], Romero, R. [UNESP]
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/PES.2007.385648
http://hdl.handle.net/11449/70030
Resumo: Network reconfiguration is an important tool to optimize the operating conditions of a distribution system. This is accomplished modifying the network structure of distribution feeders by changing the open/close status of sectionalizing switches. This not only reduces the power losses, but also relieves the overloading of the network components. Network reconfiguration belongs to a complex family of problems because of their combinatorial nature and multiple constraints. This paper proposes a solution to this problem, using a specialized evolutionary algorithm, with a novel codification, and a brand new way of implement the genetic operators considering the problem characteristics. The algorithm is presented and tested in a real distribution system, showing excellent results and computational efficiency. © 2007 IEEE.
id UNSP_41ee5d60ebae0d05a63c4a36cd577c7f
oai_identifier_str oai:repositorio.unesp.br:11449/70030
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Distribution network reconfiguration using an efficient evolutionary algorithmDistribution network reconfigurationGenetic algorithmsLoss reductionMetaheuristicsNetwork representationElectric lossesProblem solvingSwitchesGenetic operatorsNetwork reconfigurationNetwork structureElectric power distributionNetwork reconfiguration is an important tool to optimize the operating conditions of a distribution system. This is accomplished modifying the network structure of distribution feeders by changing the open/close status of sectionalizing switches. This not only reduces the power losses, but also relieves the overloading of the network components. Network reconfiguration belongs to a complex family of problems because of their combinatorial nature and multiple constraints. This paper proposes a solution to this problem, using a specialized evolutionary algorithm, with a novel codification, and a brand new way of implement the genetic operators considering the problem characteristics. The algorithm is presented and tested in a real distribution system, showing excellent results and computational efficiency. © 2007 IEEE.IEEEUniversidade Estadual Paulista (UNESP) Ilha Solteira, SPUniversidade Estadual Paulista (UNESP) Ilha Solteira, SPUniversidade Estadual Paulista (Unesp)Carreno, E. M.Moreira, N. [UNESP]Romero, R. [UNESP]2014-05-27T11:22:40Z2014-05-27T11:22:40Z2007-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.1109/PES.2007.385648IEEE Power Engineering Society General Meeting, Vols 1-10. New York: IEEE, p. 288-293, 2007.http://hdl.handle.net/11449/7003010.1109/PES.2007.385648WOS:0002513454000582-s2.0-42549159480Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2007 IEEE Power Engineering Society General Meeting, PESinfo:eu-repo/semantics/openAccess2021-10-23T21:41:22Zoai:repositorio.unesp.br:11449/70030Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:33:46.221668Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Distribution network reconfiguration using an efficient evolutionary algorithm
title Distribution network reconfiguration using an efficient evolutionary algorithm
spellingShingle Distribution network reconfiguration using an efficient evolutionary algorithm
Carreno, E. M.
Distribution network reconfiguration
Genetic algorithms
Loss reduction
Metaheuristics
Network representation
Electric losses
Problem solving
Switches
Genetic operators
Network reconfiguration
Network structure
Electric power distribution
title_short Distribution network reconfiguration using an efficient evolutionary algorithm
title_full Distribution network reconfiguration using an efficient evolutionary algorithm
title_fullStr Distribution network reconfiguration using an efficient evolutionary algorithm
title_full_unstemmed Distribution network reconfiguration using an efficient evolutionary algorithm
title_sort Distribution network reconfiguration using an efficient evolutionary algorithm
author Carreno, E. M.
author_facet Carreno, E. M.
Moreira, N. [UNESP]
Romero, R. [UNESP]
author_role author
author2 Moreira, N. [UNESP]
Romero, R. [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Carreno, E. M.
Moreira, N. [UNESP]
Romero, R. [UNESP]
dc.subject.por.fl_str_mv Distribution network reconfiguration
Genetic algorithms
Loss reduction
Metaheuristics
Network representation
Electric losses
Problem solving
Switches
Genetic operators
Network reconfiguration
Network structure
Electric power distribution
topic Distribution network reconfiguration
Genetic algorithms
Loss reduction
Metaheuristics
Network representation
Electric losses
Problem solving
Switches
Genetic operators
Network reconfiguration
Network structure
Electric power distribution
description Network reconfiguration is an important tool to optimize the operating conditions of a distribution system. This is accomplished modifying the network structure of distribution feeders by changing the open/close status of sectionalizing switches. This not only reduces the power losses, but also relieves the overloading of the network components. Network reconfiguration belongs to a complex family of problems because of their combinatorial nature and multiple constraints. This paper proposes a solution to this problem, using a specialized evolutionary algorithm, with a novel codification, and a brand new way of implement the genetic operators considering the problem characteristics. The algorithm is presented and tested in a real distribution system, showing excellent results and computational efficiency. © 2007 IEEE.
publishDate 2007
dc.date.none.fl_str_mv 2007-12-01
2014-05-27T11:22:40Z
2014-05-27T11:22:40Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/PES.2007.385648
IEEE Power Engineering Society General Meeting, Vols 1-10. New York: IEEE, p. 288-293, 2007.
http://hdl.handle.net/11449/70030
10.1109/PES.2007.385648
WOS:000251345400058
2-s2.0-42549159480
url http://dx.doi.org/10.1109/PES.2007.385648
http://hdl.handle.net/11449/70030
identifier_str_mv IEEE Power Engineering Society General Meeting, Vols 1-10. New York: IEEE, p. 288-293, 2007.
10.1109/PES.2007.385648
WOS:000251345400058
2-s2.0-42549159480
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2007 IEEE Power Engineering Society General Meeting, PES
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128826990919680