Global ballistic acceleration in a bouncing-ball model

Detalhes bibliográficos
Autor(a) principal: Kroetz, Tiago
Data de Publicação: 2015
Outros Autores: Livorati, André L. P. [UNESP], Leonel, Edson D. [UNESP], Caldas, Iberê L.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1103/PhysRevE.92.012905
http://hdl.handle.net/11449/220406
Resumo: The ballistic increase for the velocity of a particle in a bouncing-ball model was investigated. The phenomenon is caused by accelerating structures in phase space known as accelerator modes. They lead to a regular and monotonic increase of the velocity. Here, both regular and ballistic Fermi acceleration coexist in the dynamics, leading the dynamics to two different growth regimes. We characterized deaccelerator modes in the dynamics, corresponding to unstable points in the antisymmetric position of the accelerator modes. In control parameter space, parameter sets for which these accelerations and deaccelerations constitute structures were obtained analytically. Since the mapping is not symplectic, we found fractal basins of influence for acceleration and deacceleration bounded by the stable and unstable manifolds, where the basins affect globally the average velocity of the system.
id UNSP_4235dd43cbca1d3d1452bfdb3624c159
oai_identifier_str oai:repositorio.unesp.br:11449/220406
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Global ballistic acceleration in a bouncing-ball modelThe ballistic increase for the velocity of a particle in a bouncing-ball model was investigated. The phenomenon is caused by accelerating structures in phase space known as accelerator modes. They lead to a regular and monotonic increase of the velocity. Here, both regular and ballistic Fermi acceleration coexist in the dynamics, leading the dynamics to two different growth regimes. We characterized deaccelerator modes in the dynamics, corresponding to unstable points in the antisymmetric position of the accelerator modes. In control parameter space, parameter sets for which these accelerations and deaccelerations constitute structures were obtained analytically. Since the mapping is not symplectic, we found fractal basins of influence for acceleration and deacceleration bounded by the stable and unstable manifolds, where the basins affect globally the average velocity of the system.Universidade Tecnológica Federal Do ParanáInstituto de Física, Universidade de São PauloDepartamento de Física, Universidade Estadual PaulistaAbdus Salam International Center for Theoretical Physics, Strada Costiera 11Departamento de Física, Universidade Estadual PaulistaUniversidade Tecnológica Federal Do ParanáUniversidade de São Paulo (USP)Universidade Estadual Paulista (UNESP)Abdus Salam International Center for Theoretical PhysicsKroetz, TiagoLivorati, André L. P. [UNESP]Leonel, Edson D. [UNESP]Caldas, Iberê L.2022-04-28T19:01:23Z2022-04-28T19:01:23Z2015-07-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1103/PhysRevE.92.012905Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, v. 92, n. 1, 2015.1550-23761539-3755http://hdl.handle.net/11449/22040610.1103/PhysRevE.92.0129052-s2.0-84937022118Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysical Review E - Statistical, Nonlinear, and Soft Matter Physicsinfo:eu-repo/semantics/openAccess2022-04-28T19:01:23Zoai:repositorio.unesp.br:11449/220406Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:21:25.324100Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Global ballistic acceleration in a bouncing-ball model
title Global ballistic acceleration in a bouncing-ball model
spellingShingle Global ballistic acceleration in a bouncing-ball model
Kroetz, Tiago
title_short Global ballistic acceleration in a bouncing-ball model
title_full Global ballistic acceleration in a bouncing-ball model
title_fullStr Global ballistic acceleration in a bouncing-ball model
title_full_unstemmed Global ballistic acceleration in a bouncing-ball model
title_sort Global ballistic acceleration in a bouncing-ball model
author Kroetz, Tiago
author_facet Kroetz, Tiago
Livorati, André L. P. [UNESP]
Leonel, Edson D. [UNESP]
Caldas, Iberê L.
author_role author
author2 Livorati, André L. P. [UNESP]
Leonel, Edson D. [UNESP]
Caldas, Iberê L.
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Tecnológica Federal Do Paraná
Universidade de São Paulo (USP)
Universidade Estadual Paulista (UNESP)
Abdus Salam International Center for Theoretical Physics
dc.contributor.author.fl_str_mv Kroetz, Tiago
Livorati, André L. P. [UNESP]
Leonel, Edson D. [UNESP]
Caldas, Iberê L.
description The ballistic increase for the velocity of a particle in a bouncing-ball model was investigated. The phenomenon is caused by accelerating structures in phase space known as accelerator modes. They lead to a regular and monotonic increase of the velocity. Here, both regular and ballistic Fermi acceleration coexist in the dynamics, leading the dynamics to two different growth regimes. We characterized deaccelerator modes in the dynamics, corresponding to unstable points in the antisymmetric position of the accelerator modes. In control parameter space, parameter sets for which these accelerations and deaccelerations constitute structures were obtained analytically. Since the mapping is not symplectic, we found fractal basins of influence for acceleration and deacceleration bounded by the stable and unstable manifolds, where the basins affect globally the average velocity of the system.
publishDate 2015
dc.date.none.fl_str_mv 2015-07-06
2022-04-28T19:01:23Z
2022-04-28T19:01:23Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1103/PhysRevE.92.012905
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, v. 92, n. 1, 2015.
1550-2376
1539-3755
http://hdl.handle.net/11449/220406
10.1103/PhysRevE.92.012905
2-s2.0-84937022118
url http://dx.doi.org/10.1103/PhysRevE.92.012905
http://hdl.handle.net/11449/220406
identifier_str_mv Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, v. 92, n. 1, 2015.
1550-2376
1539-3755
10.1103/PhysRevE.92.012905
2-s2.0-84937022118
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128351744819200