Global ballistic acceleration in a bouncing-ball model
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1103/PhysRevE.92.012905 http://hdl.handle.net/11449/220406 |
Resumo: | The ballistic increase for the velocity of a particle in a bouncing-ball model was investigated. The phenomenon is caused by accelerating structures in phase space known as accelerator modes. They lead to a regular and monotonic increase of the velocity. Here, both regular and ballistic Fermi acceleration coexist in the dynamics, leading the dynamics to two different growth regimes. We characterized deaccelerator modes in the dynamics, corresponding to unstable points in the antisymmetric position of the accelerator modes. In control parameter space, parameter sets for which these accelerations and deaccelerations constitute structures were obtained analytically. Since the mapping is not symplectic, we found fractal basins of influence for acceleration and deacceleration bounded by the stable and unstable manifolds, where the basins affect globally the average velocity of the system. |
id |
UNSP_4235dd43cbca1d3d1452bfdb3624c159 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/220406 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Global ballistic acceleration in a bouncing-ball modelThe ballistic increase for the velocity of a particle in a bouncing-ball model was investigated. The phenomenon is caused by accelerating structures in phase space known as accelerator modes. They lead to a regular and monotonic increase of the velocity. Here, both regular and ballistic Fermi acceleration coexist in the dynamics, leading the dynamics to two different growth regimes. We characterized deaccelerator modes in the dynamics, corresponding to unstable points in the antisymmetric position of the accelerator modes. In control parameter space, parameter sets for which these accelerations and deaccelerations constitute structures were obtained analytically. Since the mapping is not symplectic, we found fractal basins of influence for acceleration and deacceleration bounded by the stable and unstable manifolds, where the basins affect globally the average velocity of the system.Universidade Tecnológica Federal Do ParanáInstituto de Física, Universidade de São PauloDepartamento de Física, Universidade Estadual PaulistaAbdus Salam International Center for Theoretical Physics, Strada Costiera 11Departamento de Física, Universidade Estadual PaulistaUniversidade Tecnológica Federal Do ParanáUniversidade de São Paulo (USP)Universidade Estadual Paulista (UNESP)Abdus Salam International Center for Theoretical PhysicsKroetz, TiagoLivorati, André L. P. [UNESP]Leonel, Edson D. [UNESP]Caldas, Iberê L.2022-04-28T19:01:23Z2022-04-28T19:01:23Z2015-07-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1103/PhysRevE.92.012905Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, v. 92, n. 1, 2015.1550-23761539-3755http://hdl.handle.net/11449/22040610.1103/PhysRevE.92.0129052-s2.0-84937022118Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysical Review E - Statistical, Nonlinear, and Soft Matter Physicsinfo:eu-repo/semantics/openAccess2022-04-28T19:01:23Zoai:repositorio.unesp.br:11449/220406Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:21:25.324100Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Global ballistic acceleration in a bouncing-ball model |
title |
Global ballistic acceleration in a bouncing-ball model |
spellingShingle |
Global ballistic acceleration in a bouncing-ball model Kroetz, Tiago |
title_short |
Global ballistic acceleration in a bouncing-ball model |
title_full |
Global ballistic acceleration in a bouncing-ball model |
title_fullStr |
Global ballistic acceleration in a bouncing-ball model |
title_full_unstemmed |
Global ballistic acceleration in a bouncing-ball model |
title_sort |
Global ballistic acceleration in a bouncing-ball model |
author |
Kroetz, Tiago |
author_facet |
Kroetz, Tiago Livorati, André L. P. [UNESP] Leonel, Edson D. [UNESP] Caldas, Iberê L. |
author_role |
author |
author2 |
Livorati, André L. P. [UNESP] Leonel, Edson D. [UNESP] Caldas, Iberê L. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Tecnológica Federal Do Paraná Universidade de São Paulo (USP) Universidade Estadual Paulista (UNESP) Abdus Salam International Center for Theoretical Physics |
dc.contributor.author.fl_str_mv |
Kroetz, Tiago Livorati, André L. P. [UNESP] Leonel, Edson D. [UNESP] Caldas, Iberê L. |
description |
The ballistic increase for the velocity of a particle in a bouncing-ball model was investigated. The phenomenon is caused by accelerating structures in phase space known as accelerator modes. They lead to a regular and monotonic increase of the velocity. Here, both regular and ballistic Fermi acceleration coexist in the dynamics, leading the dynamics to two different growth regimes. We characterized deaccelerator modes in the dynamics, corresponding to unstable points in the antisymmetric position of the accelerator modes. In control parameter space, parameter sets for which these accelerations and deaccelerations constitute structures were obtained analytically. Since the mapping is not symplectic, we found fractal basins of influence for acceleration and deacceleration bounded by the stable and unstable manifolds, where the basins affect globally the average velocity of the system. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-07-06 2022-04-28T19:01:23Z 2022-04-28T19:01:23Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1103/PhysRevE.92.012905 Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, v. 92, n. 1, 2015. 1550-2376 1539-3755 http://hdl.handle.net/11449/220406 10.1103/PhysRevE.92.012905 2-s2.0-84937022118 |
url |
http://dx.doi.org/10.1103/PhysRevE.92.012905 http://hdl.handle.net/11449/220406 |
identifier_str_mv |
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, v. 92, n. 1, 2015. 1550-2376 1539-3755 10.1103/PhysRevE.92.012905 2-s2.0-84937022118 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128351744819200 |