Majorana bound states in hybrid quantum dot-topological superconducting nanowires: detection and applications

Detalhes bibliográficos
Autor(a) principal: Ricco, Luciano Henrique Siliano
Data de Publicação: 2020
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/191985
Resumo: In the last years, the seeking for Majorana quasiparticles has been one of the hottest topics in condensed matter physics, owing to its potential application for achieving fault-tolerant quantum computing pro- cesses. Such exotic quasiparticles emerge as bound states at the ends of one-dimensional (1D) spinless p-wave superconductors within topologically protected phases. An indicative of this so-called Majorana bound states (MBSs) in these 1D systems is given by the emergence of a robust zero-bias conductance peak (ZBCP) in tunneling spectroscopy measurements. However, other physical phenomena can give rise to such a peak, as Kondo effect, disorder and Andreev bound states (ABSs), for instance. Concerning this later, such states can stick at zero energy even when parameters as magnetic field or chemical potential are changed, thus perfectly mimicking the MBSs hallmark. Hence, distinguishing between trivial ABSs and topologically protected MBSs is one of the current key issues in the filed of Majorana detection. Aiming to enlarge the discussion concerning the MBS-ABS distinction, in this thesis we study the electronic transport features of a hybrid device composed by a quantum dot coupled to a topological superconducting nanowire hosting MBSs at the ends, wherein the so-called degree of Majorana nonlocality is taken into account. In this scenario [Phys. Rev. B 98, 075142 (2018)], we analyze the role of the Fano interference phenomenon in the well-known Majorana oscillations, showing that both shape and amplitude of such oscillatory patterns depend on the bias voltage, degree of MBSs nonlocality, and Fano parameter of the system. We also demonstrate that the spin-resolved density of states of the dot responsible for the zero-bias conductance peak strongly depends on the separation between the MBSs and their relative couplings with the dot [Phys. Rev. B 99, 155159 (2019)], suggesting that spin-resolved spectroscopy can be used as a tool for discriminating between ABSs and MBSs. It is worth noticing that in both works we recover experimental profiles, at least qualitatively. Moreover, along the current thesis we propose a quantum bit storing/reading mechanism [Phys. Rev. B 93, 165116 (2016)] and a thermoelectrical hybrid device [Sci. Reports, 8, 2790 (2018)], both based on MBSs properties.
id UNSP_450dc0571d169545ae9dae655538135f
oai_identifier_str oai:repositorio.unesp.br:11449/191985
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Majorana bound states in hybrid quantum dot-topological superconducting nanowires: detection and applicationsEstados ligados de Majorana em sistemas híbridos compostos por pontos quânticos e nanofios supercondutores topológicos: detecção e aplicaçõesMajorana bound statestopological superconducting nanowiresquantum dothybrid systemsMajorana nonlocalityzero-bias conductance peakEstados ligados de MajoranaNanofios supercondutores topológicosPonto quânticoSistemas híbridosNão-localidade de MajoranaPico de condutância em voltagem zeroIn the last years, the seeking for Majorana quasiparticles has been one of the hottest topics in condensed matter physics, owing to its potential application for achieving fault-tolerant quantum computing pro- cesses. Such exotic quasiparticles emerge as bound states at the ends of one-dimensional (1D) spinless p-wave superconductors within topologically protected phases. An indicative of this so-called Majorana bound states (MBSs) in these 1D systems is given by the emergence of a robust zero-bias conductance peak (ZBCP) in tunneling spectroscopy measurements. However, other physical phenomena can give rise to such a peak, as Kondo effect, disorder and Andreev bound states (ABSs), for instance. Concerning this later, such states can stick at zero energy even when parameters as magnetic field or chemical potential are changed, thus perfectly mimicking the MBSs hallmark. Hence, distinguishing between trivial ABSs and topologically protected MBSs is one of the current key issues in the filed of Majorana detection. Aiming to enlarge the discussion concerning the MBS-ABS distinction, in this thesis we study the electronic transport features of a hybrid device composed by a quantum dot coupled to a topological superconducting nanowire hosting MBSs at the ends, wherein the so-called degree of Majorana nonlocality is taken into account. In this scenario [Phys. Rev. B 98, 075142 (2018)], we analyze the role of the Fano interference phenomenon in the well-known Majorana oscillations, showing that both shape and amplitude of such oscillatory patterns depend on the bias voltage, degree of MBSs nonlocality, and Fano parameter of the system. We also demonstrate that the spin-resolved density of states of the dot responsible for the zero-bias conductance peak strongly depends on the separation between the MBSs and their relative couplings with the dot [Phys. Rev. B 99, 155159 (2019)], suggesting that spin-resolved spectroscopy can be used as a tool for discriminating between ABSs and MBSs. It is worth noticing that in both works we recover experimental profiles, at least qualitatively. Moreover, along the current thesis we propose a quantum bit storing/reading mechanism [Phys. Rev. B 93, 165116 (2016)] and a thermoelectrical hybrid device [Sci. Reports, 8, 2790 (2018)], both based on MBSs properties.Nos últimos anos, a busca pelas denominadas quasipartículas de Majorana tem sido um dos tópicos que mais tem atraído atenção na área de Física da Matéria Condensada. Esse fato deve-se à sua po- tencial aplicação em processos de computação quântica imunes a fenômenos de decoerência e portanto, tolerante à falhas. Tais quasipartículas emergem como estados ligados, localizados nas bordas de super- condutores spinless unidimensionais do tipo p-wave, quando esses encontram-se em uma fase topologi- camente protegida. Nesses tipos de sistemas, em aparatos experimentais que envolvem espectroscopia de tunelamento eletrônico, o surgimento de um pico na condutância, localizado na voltagem zero e robusto perante variação de parâmetros do sistema, é um indicativo da presença dos chamados estados ligados de Majorana. No entanto, outros fenômenos físicos, tais como efeito Kondo, desordem e estados ligados de Andreev, por exemplo, podem dar origem a tal pico. No que diz respeito aos estados ligados de Andreev, os mesmos podem permanecer na voltagem zero com certa robustez à variação de campo mag- nético e potencial químico, emulando perfeitamente a assinatura dos estados de Majorana. Sendo assim, distinguir experimentalmente os estados de Andreev triviais dos estados de Majorana topologicamente protegidos é uma das questões fundamentais relacionadas a detecção de quasiparticulas de Majorana a serem sanadas. Levando em conta tal cenário, na presente tese analisaram-se teoricamente as características de transporte eletrônico de um sistema híbrido, composto por um ponto quântico acoplado a um nanofio supercondutor topológico com estados ligados de Majorana localizados em suas bordas, em que o denominado grau de não-localidade de Majorana foi levado em consideração. Em uma primeira abordagem [Phys. Rev. B 98, 075142 (2018)], estudou-se qual o papel da interferência Fano nas chamadas oscilações de Majorana, onde pode-se constatar que a forma e a amplitude de tais oscilações são moduladas por alguns fatores, tais como a voltagem aplicada no ponto quântico, o grau de não-localidade de Majorana e o parâmetro de Fano em questão. No mesmo tipo de sistema [Phys. Rev. B 99, 155159 (2019)], demostrou-se também que o tipo de spin da densidade de estados no ponto quântico responsável pelo pico em voltagem zero (assinatura Majorana) depende fortemente da separação entre os dois estados de Majorana nas bordas do fio, bem como dos acoplamentos entre o nanofio e o ponto quântico. Essa dependência sugere que medidas de transporte eletrônico com resolução de spin podem ser utilizadas para identificar qual o mecanismo responsável pelo surgimento do pico em voltagem zero. Vale a pena ressaltar que, em ambos os trabalhos, perfis experimentais conhecidos foram qualitativamente obtidos em nossas simulações. Ademais, ao longo da presente tese foi proposto um mecanismo de armazenamento e leitura de bit quântico [Phys. Rev. B 93, 165116 (2016)], além de um dispositivo termoelétrico híbrido [Sci. Reports, 8, 2790 (2018)], ambos baseados nas propriedades exóticas dos estados ligados de Majorana.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FAPESP: 2015/23539-8Universidade Estadual Paulista (Unesp)Seridonio, Antonio Carlos Ferreira [UNESP]Universidade Estadual Paulista (Unesp)Ricco, Luciano Henrique Siliano2020-03-25T11:47:20Z2020-03-25T11:47:20Z2020-03-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://hdl.handle.net/11449/19198500092983433004099083P9enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-08-05T13:15:07Zoai:repositorio.unesp.br:11449/191985Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T13:15:07Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Majorana bound states in hybrid quantum dot-topological superconducting nanowires: detection and applications
Estados ligados de Majorana em sistemas híbridos compostos por pontos quânticos e nanofios supercondutores topológicos: detecção e aplicações
title Majorana bound states in hybrid quantum dot-topological superconducting nanowires: detection and applications
spellingShingle Majorana bound states in hybrid quantum dot-topological superconducting nanowires: detection and applications
Ricco, Luciano Henrique Siliano
Majorana bound states
topological superconducting nanowires
quantum dot
hybrid systems
Majorana nonlocality
zero-bias conductance peak
Estados ligados de Majorana
Nanofios supercondutores topológicos
Ponto quântico
Sistemas híbridos
Não-localidade de Majorana
Pico de condutância em voltagem zero
title_short Majorana bound states in hybrid quantum dot-topological superconducting nanowires: detection and applications
title_full Majorana bound states in hybrid quantum dot-topological superconducting nanowires: detection and applications
title_fullStr Majorana bound states in hybrid quantum dot-topological superconducting nanowires: detection and applications
title_full_unstemmed Majorana bound states in hybrid quantum dot-topological superconducting nanowires: detection and applications
title_sort Majorana bound states in hybrid quantum dot-topological superconducting nanowires: detection and applications
author Ricco, Luciano Henrique Siliano
author_facet Ricco, Luciano Henrique Siliano
author_role author
dc.contributor.none.fl_str_mv Seridonio, Antonio Carlos Ferreira [UNESP]
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Ricco, Luciano Henrique Siliano
dc.subject.por.fl_str_mv Majorana bound states
topological superconducting nanowires
quantum dot
hybrid systems
Majorana nonlocality
zero-bias conductance peak
Estados ligados de Majorana
Nanofios supercondutores topológicos
Ponto quântico
Sistemas híbridos
Não-localidade de Majorana
Pico de condutância em voltagem zero
topic Majorana bound states
topological superconducting nanowires
quantum dot
hybrid systems
Majorana nonlocality
zero-bias conductance peak
Estados ligados de Majorana
Nanofios supercondutores topológicos
Ponto quântico
Sistemas híbridos
Não-localidade de Majorana
Pico de condutância em voltagem zero
description In the last years, the seeking for Majorana quasiparticles has been one of the hottest topics in condensed matter physics, owing to its potential application for achieving fault-tolerant quantum computing pro- cesses. Such exotic quasiparticles emerge as bound states at the ends of one-dimensional (1D) spinless p-wave superconductors within topologically protected phases. An indicative of this so-called Majorana bound states (MBSs) in these 1D systems is given by the emergence of a robust zero-bias conductance peak (ZBCP) in tunneling spectroscopy measurements. However, other physical phenomena can give rise to such a peak, as Kondo effect, disorder and Andreev bound states (ABSs), for instance. Concerning this later, such states can stick at zero energy even when parameters as magnetic field or chemical potential are changed, thus perfectly mimicking the MBSs hallmark. Hence, distinguishing between trivial ABSs and topologically protected MBSs is one of the current key issues in the filed of Majorana detection. Aiming to enlarge the discussion concerning the MBS-ABS distinction, in this thesis we study the electronic transport features of a hybrid device composed by a quantum dot coupled to a topological superconducting nanowire hosting MBSs at the ends, wherein the so-called degree of Majorana nonlocality is taken into account. In this scenario [Phys. Rev. B 98, 075142 (2018)], we analyze the role of the Fano interference phenomenon in the well-known Majorana oscillations, showing that both shape and amplitude of such oscillatory patterns depend on the bias voltage, degree of MBSs nonlocality, and Fano parameter of the system. We also demonstrate that the spin-resolved density of states of the dot responsible for the zero-bias conductance peak strongly depends on the separation between the MBSs and their relative couplings with the dot [Phys. Rev. B 99, 155159 (2019)], suggesting that spin-resolved spectroscopy can be used as a tool for discriminating between ABSs and MBSs. It is worth noticing that in both works we recover experimental profiles, at least qualitatively. Moreover, along the current thesis we propose a quantum bit storing/reading mechanism [Phys. Rev. B 93, 165116 (2016)] and a thermoelectrical hybrid device [Sci. Reports, 8, 2790 (2018)], both based on MBSs properties.
publishDate 2020
dc.date.none.fl_str_mv 2020-03-25T11:47:20Z
2020-03-25T11:47:20Z
2020-03-09
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11449/191985
000929834
33004099083P9
url http://hdl.handle.net/11449/191985
identifier_str_mv 000929834
33004099083P9
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128191298011136