Quasiprobability distribution functions for finite-dimensional discrete phase spaces: Spin-tunneling effects in a toy model
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1103/PhysRevA.79.022114 http://hdl.handle.net/11449/225432 |
Resumo: | We show how quasiprobability distribution functions defined over N2 -dimensional discrete phase spaces can be used to treat physical systems described by a finite space of states which exhibit spin-tunneling effects. This particular approach is then applied to the Lipkin-Meshkov-Glick model in order to obtain the time evolution of the discrete Husimi function, and as a by-product the energy gap for a symmetric combination of ground and first excited states. Moreover, we also show how an angle-based potential approach can be efficiently employed to explain qualitatively certain features of the energy gap in terms of a spin tunneling. Entropy functionals are also discussed in this context. Such results reinforce not only the formalism per se but also the possibility of some future potential applications in other branches of physics. © 2009 The American Physical Society. |
id |
UNSP_467c69600c6b3ea5e9989c4404e95cdb |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/225432 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Quasiprobability distribution functions for finite-dimensional discrete phase spaces: Spin-tunneling effects in a toy modelWe show how quasiprobability distribution functions defined over N2 -dimensional discrete phase spaces can be used to treat physical systems described by a finite space of states which exhibit spin-tunneling effects. This particular approach is then applied to the Lipkin-Meshkov-Glick model in order to obtain the time evolution of the discrete Husimi function, and as a by-product the energy gap for a symmetric combination of ground and first excited states. Moreover, we also show how an angle-based potential approach can be efficiently employed to explain qualitatively certain features of the energy gap in terms of a spin tunneling. Entropy functionals are also discussed in this context. Such results reinforce not only the formalism per se but also the possibility of some future potential applications in other branches of physics. © 2009 The American Physical Society.Instituto de Física Teórica Universidade Estadual Paulista, Rua Pamplona 145, 01405-900, São Paulo, SPInstituto de Física Teórica Universidade Estadual Paulista, Rua Pamplona 145, 01405-900, São Paulo, SPUniversidade Estadual Paulista (UNESP)Marchiolli, Marcelo A. [UNESP]Silva, Evandro C. [UNESP]Galetti, Diógenes [UNESP]2022-04-28T20:50:00Z2022-04-28T20:50:00Z2009-02-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1103/PhysRevA.79.022114Physical Review A - Atomic, Molecular, and Optical Physics, v. 79, n. 2, 2009.1050-29471094-1622http://hdl.handle.net/11449/22543210.1103/PhysRevA.79.0221142-s2.0-61849147447Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysical Review A - Atomic, Molecular, and Optical Physicsinfo:eu-repo/semantics/openAccess2022-04-28T20:50:00Zoai:repositorio.unesp.br:11449/225432Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:14:15.361208Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Quasiprobability distribution functions for finite-dimensional discrete phase spaces: Spin-tunneling effects in a toy model |
title |
Quasiprobability distribution functions for finite-dimensional discrete phase spaces: Spin-tunneling effects in a toy model |
spellingShingle |
Quasiprobability distribution functions for finite-dimensional discrete phase spaces: Spin-tunneling effects in a toy model Marchiolli, Marcelo A. [UNESP] |
title_short |
Quasiprobability distribution functions for finite-dimensional discrete phase spaces: Spin-tunneling effects in a toy model |
title_full |
Quasiprobability distribution functions for finite-dimensional discrete phase spaces: Spin-tunneling effects in a toy model |
title_fullStr |
Quasiprobability distribution functions for finite-dimensional discrete phase spaces: Spin-tunneling effects in a toy model |
title_full_unstemmed |
Quasiprobability distribution functions for finite-dimensional discrete phase spaces: Spin-tunneling effects in a toy model |
title_sort |
Quasiprobability distribution functions for finite-dimensional discrete phase spaces: Spin-tunneling effects in a toy model |
author |
Marchiolli, Marcelo A. [UNESP] |
author_facet |
Marchiolli, Marcelo A. [UNESP] Silva, Evandro C. [UNESP] Galetti, Diógenes [UNESP] |
author_role |
author |
author2 |
Silva, Evandro C. [UNESP] Galetti, Diógenes [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Marchiolli, Marcelo A. [UNESP] Silva, Evandro C. [UNESP] Galetti, Diógenes [UNESP] |
description |
We show how quasiprobability distribution functions defined over N2 -dimensional discrete phase spaces can be used to treat physical systems described by a finite space of states which exhibit spin-tunneling effects. This particular approach is then applied to the Lipkin-Meshkov-Glick model in order to obtain the time evolution of the discrete Husimi function, and as a by-product the energy gap for a symmetric combination of ground and first excited states. Moreover, we also show how an angle-based potential approach can be efficiently employed to explain qualitatively certain features of the energy gap in terms of a spin tunneling. Entropy functionals are also discussed in this context. Such results reinforce not only the formalism per se but also the possibility of some future potential applications in other branches of physics. © 2009 The American Physical Society. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-02-17 2022-04-28T20:50:00Z 2022-04-28T20:50:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1103/PhysRevA.79.022114 Physical Review A - Atomic, Molecular, and Optical Physics, v. 79, n. 2, 2009. 1050-2947 1094-1622 http://hdl.handle.net/11449/225432 10.1103/PhysRevA.79.022114 2-s2.0-61849147447 |
url |
http://dx.doi.org/10.1103/PhysRevA.79.022114 http://hdl.handle.net/11449/225432 |
identifier_str_mv |
Physical Review A - Atomic, Molecular, and Optical Physics, v. 79, n. 2, 2009. 1050-2947 1094-1622 10.1103/PhysRevA.79.022114 2-s2.0-61849147447 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Physical Review A - Atomic, Molecular, and Optical Physics |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128776632008704 |