Long-range correlations in the mechanics of small DNA circles under topological stress revealed by multi-scale simulation

Detalhes bibliográficos
Autor(a) principal: Sutthibutpong, Thana
Data de Publicação: 2016
Outros Autores: Matek, Christian, Benham, Craig, Slade, Gabriel G. [UNESP], Noy, Agnes, Laughton, Charles, Doye, Jonathan P. K., Louis, Ard A., Harris, Sarah A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1093/nar/gkw815
http://hdl.handle.net/11449/162166
Resumo: It is well established that gene regulation can be achieved through activator and repressor proteins that bind to DNA and switch particular genes on or off, and that complex metabolic networks determine the levels of transcription of a given gene at a given time. Using three complementary computational techniques to study the sequence-dependence of DNA denaturation within DNA minicircles, we have observed that whenever the ends of the DNA are constrained, information can be transferred over long distances directly by the transmission of mechanical stress through the DNA itself, without any requirement for external signalling factors. Our models combine atomistic molecular dynamics (MD) with coarse-grained simulations and statistical mechanical calculations to span three distinct spatial resolutions and timescale regimes. While they give a consensus view of the non-locality of sequence-dependent denaturation in highly bent and supercoiled DNA loops, each also reveals a unique aspect of long-range informational transfer that occurs as a result of restraining the DNA within the closed loop of the minicircles.
id UNSP_4680ad0cf4bfb2d666c919ed31a1258a
oai_identifier_str oai:repositorio.unesp.br:11449/162166
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Long-range correlations in the mechanics of small DNA circles under topological stress revealed by multi-scale simulationIt is well established that gene regulation can be achieved through activator and repressor proteins that bind to DNA and switch particular genes on or off, and that complex metabolic networks determine the levels of transcription of a given gene at a given time. Using three complementary computational techniques to study the sequence-dependence of DNA denaturation within DNA minicircles, we have observed that whenever the ends of the DNA are constrained, information can be transferred over long distances directly by the transmission of mechanical stress through the DNA itself, without any requirement for external signalling factors. Our models combine atomistic molecular dynamics (MD) with coarse-grained simulations and statistical mechanical calculations to span three distinct spatial resolutions and timescale regimes. While they give a consensus view of the non-locality of sequence-dependent denaturation in highly bent and supercoiled DNA loops, each also reveals a unique aspect of long-range informational transfer that occurs as a result of restraining the DNA within the closed loop of the minicircles.Thai Ministry of Science and TechnologyBBSRCNational Science FoundationCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)University of Leeds Advanced Research Computing (ARC) unitsN8 consortiumEPSRCStudienstiftung des deutschen VolkesGerman Academic Exchange Service (DAAD)University of LeedsEngineering and Physical Sciences Research CouncilUniv Leeds, Sch Phys & Astron, Woodhouse Lane, Leeds LS2 9JT, W Yorkshire, EnglandKMUTT, Fac Sci, Theoret & Computat Sci Ctr TaCS, Sci Lab Bldg,126 Pracha Uthit Rd, Bangkok 10140, ThailandUniv Oxford, Rudolf Peierls Ctr Theoret Phys, Parks Rd, Oxford OX1 3PU, EnglandUC Davis Genome Ctr, Hlth Sci Dr, Davis, CA 95616 USASao Paulo State Univ, Dept Phys, Rua Cristovao, BR-15054000 Sao Jose Do Rio Preto, SP, BrazilUniv York, Dept Phys, Biol Phys Sci Inst, York YO10 5DD, N Yorkshire, EnglandUniv Nottingham, Sch Pharm, Univ Pk, Nottingham NG7 2RD, EnglandUniv Nottingham, Ctr Biomol Sci, Univ Pk, Nottingham NG7 2RD, EnglandUniv Oxford, Dept Chem, Phys & Theoret Chem Lab, South Parks Rd, Oxford OX1 3QZ, EnglandUniv Leeds, Astbury Ctr Struct & Mol Biol, Woodhouse Lane, Leeds LS2 9JT, W Yorkshire, EnglandSao Paulo State Univ, Dept Phys, Rua Cristovao, BR-15054000 Sao Jose Do Rio Preto, SP, BrazilBBSRC: BB/I019472/1National Science Foundation: DBI-0850214National Science Foundation: ACI-1053575EPSRC: EP/N027639/1Engineering and Physical Sciences Research Council: EP/N027639/1Oxford Univ PressUniv LeedsKMUTTUniv OxfordUC Davis Genome CtrUniversidade Estadual Paulista (Unesp)Univ YorkUniv NottinghamSutthibutpong, ThanaMatek, ChristianBenham, CraigSlade, Gabriel G. [UNESP]Noy, AgnesLaughton, CharlesDoye, Jonathan P. K.Louis, Ard A.Harris, Sarah A.2018-11-26T17:10:39Z2018-11-26T17:10:39Z2016-11-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article9121-9130application/pdfhttp://dx.doi.org/10.1093/nar/gkw815Nucleic Acids Research. Oxford: Oxford Univ Press, v. 44, n. 19, p. 9121-9130, 2016.0305-1048http://hdl.handle.net/11449/16216610.1093/nar/gkw815WOS:000388016900013WOS000388016900013.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengNucleic Acids Research9,025info:eu-repo/semantics/openAccess2023-10-01T06:06:26Zoai:repositorio.unesp.br:11449/162166Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T13:41:14.435965Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Long-range correlations in the mechanics of small DNA circles under topological stress revealed by multi-scale simulation
title Long-range correlations in the mechanics of small DNA circles under topological stress revealed by multi-scale simulation
spellingShingle Long-range correlations in the mechanics of small DNA circles under topological stress revealed by multi-scale simulation
Sutthibutpong, Thana
title_short Long-range correlations in the mechanics of small DNA circles under topological stress revealed by multi-scale simulation
title_full Long-range correlations in the mechanics of small DNA circles under topological stress revealed by multi-scale simulation
title_fullStr Long-range correlations in the mechanics of small DNA circles under topological stress revealed by multi-scale simulation
title_full_unstemmed Long-range correlations in the mechanics of small DNA circles under topological stress revealed by multi-scale simulation
title_sort Long-range correlations in the mechanics of small DNA circles under topological stress revealed by multi-scale simulation
author Sutthibutpong, Thana
author_facet Sutthibutpong, Thana
Matek, Christian
Benham, Craig
Slade, Gabriel G. [UNESP]
Noy, Agnes
Laughton, Charles
Doye, Jonathan P. K.
Louis, Ard A.
Harris, Sarah A.
author_role author
author2 Matek, Christian
Benham, Craig
Slade, Gabriel G. [UNESP]
Noy, Agnes
Laughton, Charles
Doye, Jonathan P. K.
Louis, Ard A.
Harris, Sarah A.
author2_role author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Univ Leeds
KMUTT
Univ Oxford
UC Davis Genome Ctr
Universidade Estadual Paulista (Unesp)
Univ York
Univ Nottingham
dc.contributor.author.fl_str_mv Sutthibutpong, Thana
Matek, Christian
Benham, Craig
Slade, Gabriel G. [UNESP]
Noy, Agnes
Laughton, Charles
Doye, Jonathan P. K.
Louis, Ard A.
Harris, Sarah A.
description It is well established that gene regulation can be achieved through activator and repressor proteins that bind to DNA and switch particular genes on or off, and that complex metabolic networks determine the levels of transcription of a given gene at a given time. Using three complementary computational techniques to study the sequence-dependence of DNA denaturation within DNA minicircles, we have observed that whenever the ends of the DNA are constrained, information can be transferred over long distances directly by the transmission of mechanical stress through the DNA itself, without any requirement for external signalling factors. Our models combine atomistic molecular dynamics (MD) with coarse-grained simulations and statistical mechanical calculations to span three distinct spatial resolutions and timescale regimes. While they give a consensus view of the non-locality of sequence-dependent denaturation in highly bent and supercoiled DNA loops, each also reveals a unique aspect of long-range informational transfer that occurs as a result of restraining the DNA within the closed loop of the minicircles.
publishDate 2016
dc.date.none.fl_str_mv 2016-11-02
2018-11-26T17:10:39Z
2018-11-26T17:10:39Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1093/nar/gkw815
Nucleic Acids Research. Oxford: Oxford Univ Press, v. 44, n. 19, p. 9121-9130, 2016.
0305-1048
http://hdl.handle.net/11449/162166
10.1093/nar/gkw815
WOS:000388016900013
WOS000388016900013.pdf
url http://dx.doi.org/10.1093/nar/gkw815
http://hdl.handle.net/11449/162166
identifier_str_mv Nucleic Acids Research. Oxford: Oxford Univ Press, v. 44, n. 19, p. 9121-9130, 2016.
0305-1048
10.1093/nar/gkw815
WOS:000388016900013
WOS000388016900013.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Nucleic Acids Research
9,025
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 9121-9130
application/pdf
dc.publisher.none.fl_str_mv Oxford Univ Press
publisher.none.fl_str_mv Oxford Univ Press
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128264111128576