Preprocessing data for short-term load forecasting with a general regression neural network and a moving average filter
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/PTC.2011.6019428 http://hdl.handle.net/11449/72741 |
Resumo: | This paper proposes a filter based on a general regression neural network and a moving average filter, for preprocessing half-hourly load data for short-term multinodal load forecasting, discussed in another paper. Tests made with half-hourly load data from nine New Zealand electrical substations demonstrate that this filter is able to handle noise, missing data and abnormal data. © 2011 IEEE. |
id |
UNSP_4728399dc393124d30930a1d9b98af37 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/72741 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Preprocessing data for short-term load forecasting with a general regression neural network and a moving average filterArtificial Neural NetworksMoving Average FilterShort Term Load ForecastingSignal ProcessingTraining DatasetAbnormal dataElectrical substationsFilter-basedGeneral regression neural networkLoad dataLoad forecastingMissing dataMoving average filterNew zealandForecastingNeural networksSignal processingSustainable developmentElectric load forecastingThis paper proposes a filter based on a general regression neural network and a moving average filter, for preprocessing half-hourly load data for short-term multinodal load forecasting, discussed in another paper. Tests made with half-hourly load data from nine New Zealand electrical substations demonstrate that this filter is able to handle noise, missing data and abnormal data. © 2011 IEEE.Department of Electrical Engineering College of Engineering of Ilha Solteira (UNESP), Ilha Solteira, SPDepartment of Electrical Engineering College of Engineering of Ilha Solteira (UNESP), Ilha Solteira, SPUniversidade Estadual Paulista (Unesp)Nose-Filho, K. [UNESP]Lotufo, A. D P [UNESP]Minussi, C. R. [UNESP]2014-05-27T11:26:03Z2014-05-27T11:26:03Z2011-10-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.1109/PTC.2011.60194282011 IEEE PES Trondheim PowerTech: The Power of Technology for a Sustainable Society, POWERTECH 2011.http://hdl.handle.net/11449/7274110.1109/PTC.2011.60194282-s2.0-800533500917166279400544764Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2011 IEEE PES Trondheim PowerTech: The Power of Technology for a Sustainable Society, POWERTECH 2011info:eu-repo/semantics/openAccess2024-07-04T19:11:33Zoai:repositorio.unesp.br:11449/72741Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:28:26.645212Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Preprocessing data for short-term load forecasting with a general regression neural network and a moving average filter |
title |
Preprocessing data for short-term load forecasting with a general regression neural network and a moving average filter |
spellingShingle |
Preprocessing data for short-term load forecasting with a general regression neural network and a moving average filter Nose-Filho, K. [UNESP] Artificial Neural Networks Moving Average Filter Short Term Load Forecasting Signal Processing Training Dataset Abnormal data Electrical substations Filter-based General regression neural network Load data Load forecasting Missing data Moving average filter New zealand Forecasting Neural networks Signal processing Sustainable development Electric load forecasting |
title_short |
Preprocessing data for short-term load forecasting with a general regression neural network and a moving average filter |
title_full |
Preprocessing data for short-term load forecasting with a general regression neural network and a moving average filter |
title_fullStr |
Preprocessing data for short-term load forecasting with a general regression neural network and a moving average filter |
title_full_unstemmed |
Preprocessing data for short-term load forecasting with a general regression neural network and a moving average filter |
title_sort |
Preprocessing data for short-term load forecasting with a general regression neural network and a moving average filter |
author |
Nose-Filho, K. [UNESP] |
author_facet |
Nose-Filho, K. [UNESP] Lotufo, A. D P [UNESP] Minussi, C. R. [UNESP] |
author_role |
author |
author2 |
Lotufo, A. D P [UNESP] Minussi, C. R. [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Nose-Filho, K. [UNESP] Lotufo, A. D P [UNESP] Minussi, C. R. [UNESP] |
dc.subject.por.fl_str_mv |
Artificial Neural Networks Moving Average Filter Short Term Load Forecasting Signal Processing Training Dataset Abnormal data Electrical substations Filter-based General regression neural network Load data Load forecasting Missing data Moving average filter New zealand Forecasting Neural networks Signal processing Sustainable development Electric load forecasting |
topic |
Artificial Neural Networks Moving Average Filter Short Term Load Forecasting Signal Processing Training Dataset Abnormal data Electrical substations Filter-based General regression neural network Load data Load forecasting Missing data Moving average filter New zealand Forecasting Neural networks Signal processing Sustainable development Electric load forecasting |
description |
This paper proposes a filter based on a general regression neural network and a moving average filter, for preprocessing half-hourly load data for short-term multinodal load forecasting, discussed in another paper. Tests made with half-hourly load data from nine New Zealand electrical substations demonstrate that this filter is able to handle noise, missing data and abnormal data. © 2011 IEEE. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-10-05 2014-05-27T11:26:03Z 2014-05-27T11:26:03Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/PTC.2011.6019428 2011 IEEE PES Trondheim PowerTech: The Power of Technology for a Sustainable Society, POWERTECH 2011. http://hdl.handle.net/11449/72741 10.1109/PTC.2011.6019428 2-s2.0-80053350091 7166279400544764 |
url |
http://dx.doi.org/10.1109/PTC.2011.6019428 http://hdl.handle.net/11449/72741 |
identifier_str_mv |
2011 IEEE PES Trondheim PowerTech: The Power of Technology for a Sustainable Society, POWERTECH 2011. 10.1109/PTC.2011.6019428 2-s2.0-80053350091 7166279400544764 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2011 IEEE PES Trondheim PowerTech: The Power of Technology for a Sustainable Society, POWERTECH 2011 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128816319561728 |