Free actions of abelian p-groups on the n-Torus
Autor(a) principal: | |
---|---|
Data de Publicação: | 2005 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/224509 |
Resumo: | In this work we make some contributions to the theory of actions of abelian p-groups on the n-Torus Tn. Set H ≅ ℤpk1 h1 × ℤpk2h2 × ⋯ × ℤpkrhr, r ≥ 1, k1 ≥ k2 ≥ ⋯ ≥ kr ≥ 1, p prime. Suppose that the group H acts freely on Tn and the induced representation on π 1(Tn) ≅ ℤn is faithful and has first Betti number b. We show that the numbers n, p, b, ki and h i (i = 1, ⋯ , r) satisfy some relation. In particular, when H ≅ ℤph, the minimum value of n is φ(p) + b when b ≥ 1. Also when H ≅ ℤpk1, × ℤp the minimum value of n is φ(pk1)+ p - 1 + 6 for 6 ≥ 1. Here φ denotes the Euler function. © 2005 University of Houston. |
id |
UNSP_47a52d91d779f064de86a539460e0e14 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/224509 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Free actions of abelian p-groups on the n-TorusBieberbach groupsFree actionsIntegral representationp-groupsIn this work we make some contributions to the theory of actions of abelian p-groups on the n-Torus Tn. Set H ≅ ℤpk1 h1 × ℤpk2h2 × ⋯ × ℤpkrhr, r ≥ 1, k1 ≥ k2 ≥ ⋯ ≥ kr ≥ 1, p prime. Suppose that the group H acts freely on Tn and the induced representation on π 1(Tn) ≅ ℤn is faithful and has first Betti number b. We show that the numbers n, p, b, ki and h i (i = 1, ⋯ , r) satisfy some relation. In particular, when H ≅ ℤph, the minimum value of n is φ(p) + b when b ≥ 1. Also when H ≅ ℤpk1, × ℤp the minimum value of n is φ(pk1)+ p - 1 + 6 for 6 ≥ 1. Here φ denotes the Euler function. © 2005 University of Houston.Departamento de Matemática IME USP, Caixa Postal 66.281, CEP 05311-970, São Paulo - SPDepartamento de Matemática IGCE UNESP, Caixa Postal 178, CEP 13500-230, Rio Claro - SPDepartamento de Matemática IGCE UNESP, Caixa Postal 178, CEP 13500-230, Rio Claro - SPUniversidade de São Paulo (USP)Universidade Estadual Paulista (UNESP)Gonçalves, Daciberg LimaVieira, João Peres [UNESP]2022-04-28T19:56:58Z2022-04-28T19:56:58Z2005-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article87-102Houston Journal of Mathematics, v. 31, n. 1, p. 87-102, 2005.0362-1588http://hdl.handle.net/11449/2245092-s2.0-17244380104Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengHouston Journal of Mathematicsinfo:eu-repo/semantics/openAccess2022-04-28T19:56:58Zoai:repositorio.unesp.br:11449/224509Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:00:22.773831Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Free actions of abelian p-groups on the n-Torus |
title |
Free actions of abelian p-groups on the n-Torus |
spellingShingle |
Free actions of abelian p-groups on the n-Torus Gonçalves, Daciberg Lima Bieberbach groups Free actions Integral representation p-groups |
title_short |
Free actions of abelian p-groups on the n-Torus |
title_full |
Free actions of abelian p-groups on the n-Torus |
title_fullStr |
Free actions of abelian p-groups on the n-Torus |
title_full_unstemmed |
Free actions of abelian p-groups on the n-Torus |
title_sort |
Free actions of abelian p-groups on the n-Torus |
author |
Gonçalves, Daciberg Lima |
author_facet |
Gonçalves, Daciberg Lima Vieira, João Peres [UNESP] |
author_role |
author |
author2 |
Vieira, João Peres [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade de São Paulo (USP) Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Gonçalves, Daciberg Lima Vieira, João Peres [UNESP] |
dc.subject.por.fl_str_mv |
Bieberbach groups Free actions Integral representation p-groups |
topic |
Bieberbach groups Free actions Integral representation p-groups |
description |
In this work we make some contributions to the theory of actions of abelian p-groups on the n-Torus Tn. Set H ≅ ℤpk1 h1 × ℤpk2h2 × ⋯ × ℤpkrhr, r ≥ 1, k1 ≥ k2 ≥ ⋯ ≥ kr ≥ 1, p prime. Suppose that the group H acts freely on Tn and the induced representation on π 1(Tn) ≅ ℤn is faithful and has first Betti number b. We show that the numbers n, p, b, ki and h i (i = 1, ⋯ , r) satisfy some relation. In particular, when H ≅ ℤph, the minimum value of n is φ(p) + b when b ≥ 1. Also when H ≅ ℤpk1, × ℤp the minimum value of n is φ(pk1)+ p - 1 + 6 for 6 ≥ 1. Here φ denotes the Euler function. © 2005 University of Houston. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-01-01 2022-04-28T19:56:58Z 2022-04-28T19:56:58Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Houston Journal of Mathematics, v. 31, n. 1, p. 87-102, 2005. 0362-1588 http://hdl.handle.net/11449/224509 2-s2.0-17244380104 |
identifier_str_mv |
Houston Journal of Mathematics, v. 31, n. 1, p. 87-102, 2005. 0362-1588 2-s2.0-17244380104 |
url |
http://hdl.handle.net/11449/224509 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Houston Journal of Mathematics |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
87-102 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128884194934784 |