Free actions of abelian p-groups on the n-Torus

Detalhes bibliográficos
Autor(a) principal: Gonçalves, Daciberg Lima
Data de Publicação: 2005
Outros Autores: Vieira, João Peres [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/224509
Resumo: In this work we make some contributions to the theory of actions of abelian p-groups on the n-Torus Tn. Set H ≅ ℤpk1 h1 × ℤpk2h2 × ⋯ × ℤpkrhr, r ≥ 1, k1 ≥ k2 ≥ ⋯ ≥ kr ≥ 1, p prime. Suppose that the group H acts freely on Tn and the induced representation on π 1(Tn) ≅ ℤn is faithful and has first Betti number b. We show that the numbers n, p, b, ki and h i (i = 1, ⋯ , r) satisfy some relation. In particular, when H ≅ ℤph, the minimum value of n is φ(p) + b when b ≥ 1. Also when H ≅ ℤpk1, × ℤp the minimum value of n is φ(pk1)+ p - 1 + 6 for 6 ≥ 1. Here φ denotes the Euler function. © 2005 University of Houston.
id UNSP_47a52d91d779f064de86a539460e0e14
oai_identifier_str oai:repositorio.unesp.br:11449/224509
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Free actions of abelian p-groups on the n-TorusBieberbach groupsFree actionsIntegral representationp-groupsIn this work we make some contributions to the theory of actions of abelian p-groups on the n-Torus Tn. Set H ≅ ℤpk1 h1 × ℤpk2h2 × ⋯ × ℤpkrhr, r ≥ 1, k1 ≥ k2 ≥ ⋯ ≥ kr ≥ 1, p prime. Suppose that the group H acts freely on Tn and the induced representation on π 1(Tn) ≅ ℤn is faithful and has first Betti number b. We show that the numbers n, p, b, ki and h i (i = 1, ⋯ , r) satisfy some relation. In particular, when H ≅ ℤph, the minimum value of n is φ(p) + b when b ≥ 1. Also when H ≅ ℤpk1, × ℤp the minimum value of n is φ(pk1)+ p - 1 + 6 for 6 ≥ 1. Here φ denotes the Euler function. © 2005 University of Houston.Departamento de Matemática IME USP, Caixa Postal 66.281, CEP 05311-970, São Paulo - SPDepartamento de Matemática IGCE UNESP, Caixa Postal 178, CEP 13500-230, Rio Claro - SPDepartamento de Matemática IGCE UNESP, Caixa Postal 178, CEP 13500-230, Rio Claro - SPUniversidade de São Paulo (USP)Universidade Estadual Paulista (UNESP)Gonçalves, Daciberg LimaVieira, João Peres [UNESP]2022-04-28T19:56:58Z2022-04-28T19:56:58Z2005-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article87-102Houston Journal of Mathematics, v. 31, n. 1, p. 87-102, 2005.0362-1588http://hdl.handle.net/11449/2245092-s2.0-17244380104Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengHouston Journal of Mathematicsinfo:eu-repo/semantics/openAccess2022-04-28T19:56:58Zoai:repositorio.unesp.br:11449/224509Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:00:22.773831Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Free actions of abelian p-groups on the n-Torus
title Free actions of abelian p-groups on the n-Torus
spellingShingle Free actions of abelian p-groups on the n-Torus
Gonçalves, Daciberg Lima
Bieberbach groups
Free actions
Integral representation
p-groups
title_short Free actions of abelian p-groups on the n-Torus
title_full Free actions of abelian p-groups on the n-Torus
title_fullStr Free actions of abelian p-groups on the n-Torus
title_full_unstemmed Free actions of abelian p-groups on the n-Torus
title_sort Free actions of abelian p-groups on the n-Torus
author Gonçalves, Daciberg Lima
author_facet Gonçalves, Daciberg Lima
Vieira, João Peres [UNESP]
author_role author
author2 Vieira, João Peres [UNESP]
author2_role author
dc.contributor.none.fl_str_mv Universidade de São Paulo (USP)
Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Gonçalves, Daciberg Lima
Vieira, João Peres [UNESP]
dc.subject.por.fl_str_mv Bieberbach groups
Free actions
Integral representation
p-groups
topic Bieberbach groups
Free actions
Integral representation
p-groups
description In this work we make some contributions to the theory of actions of abelian p-groups on the n-Torus Tn. Set H ≅ ℤpk1 h1 × ℤpk2h2 × ⋯ × ℤpkrhr, r ≥ 1, k1 ≥ k2 ≥ ⋯ ≥ kr ≥ 1, p prime. Suppose that the group H acts freely on Tn and the induced representation on π 1(Tn) ≅ ℤn is faithful and has first Betti number b. We show that the numbers n, p, b, ki and h i (i = 1, ⋯ , r) satisfy some relation. In particular, when H ≅ ℤph, the minimum value of n is φ(p) + b when b ≥ 1. Also when H ≅ ℤpk1, × ℤp the minimum value of n is φ(pk1)+ p - 1 + 6 for 6 ≥ 1. Here φ denotes the Euler function. © 2005 University of Houston.
publishDate 2005
dc.date.none.fl_str_mv 2005-01-01
2022-04-28T19:56:58Z
2022-04-28T19:56:58Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Houston Journal of Mathematics, v. 31, n. 1, p. 87-102, 2005.
0362-1588
http://hdl.handle.net/11449/224509
2-s2.0-17244380104
identifier_str_mv Houston Journal of Mathematics, v. 31, n. 1, p. 87-102, 2005.
0362-1588
2-s2.0-17244380104
url http://hdl.handle.net/11449/224509
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Houston Journal of Mathematics
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 87-102
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128884194934784