Suppression of Fermi Acceleration in the Oval Billiard

Detalhes bibliográficos
Autor(a) principal: Leonel, Edson Denis [UNESP]
Data de Publicação: 2021
Tipo de documento: Capítulo de livro
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/978-981-16-3544-1_14
http://hdl.handle.net/11449/233486
Resumo: We consider in this chapter the introduction of drag force in the oval billiard. As we have seen in Chap. 13 from the LRA conjecture, the chaotic dynamics in the static billiard is a sufficient condition to produce unlimited diffusion in the energy, i.e, Fermi acceleration, when a time perturbation to the boundary is introduced. We show in this chapter that the introduction of a drag force of the type F∝ - V, or F∝ ± V2 or F∝ - Vδ with δ≠ 1 and δ≠ 2 destroys the unlimited energy growth for an ensemble of particles. This result is a clear indication that Fermi acceleration is not a robust phenomena.
id UNSP_4817656b6cf959da72fa92f68477c584
oai_identifier_str oai:repositorio.unesp.br:11449/233486
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Suppression of Fermi Acceleration in the Oval BilliardWe consider in this chapter the introduction of drag force in the oval billiard. As we have seen in Chap. 13 from the LRA conjecture, the chaotic dynamics in the static billiard is a sufficient condition to produce unlimited diffusion in the energy, i.e, Fermi acceleration, when a time perturbation to the boundary is introduced. We show in this chapter that the introduction of a drag force of the type F∝ - V, or F∝ ± V2 or F∝ - Vδ with δ≠ 1 and δ≠ 2 destroys the unlimited energy growth for an ensemble of particles. This result is a clear indication that Fermi acceleration is not a robust phenomena.Departmamento de Física Sao Paulo State UniversityDepartmamento de Física Sao Paulo State UniversityUniversidade Estadual Paulista (UNESP)Leonel, Edson Denis [UNESP]2022-05-01T08:45:05Z2022-05-01T08:45:05Z2021-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookPart191-203http://dx.doi.org/10.1007/978-981-16-3544-1_14Nonlinear Physical Science, p. 191-203.1867-84591867-8440http://hdl.handle.net/11449/23348610.1007/978-981-16-3544-1_142-s2.0-85114317558Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengNonlinear Physical Scienceinfo:eu-repo/semantics/openAccess2022-05-01T08:45:05Zoai:repositorio.unesp.br:11449/233486Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:22:57.649157Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Suppression of Fermi Acceleration in the Oval Billiard
title Suppression of Fermi Acceleration in the Oval Billiard
spellingShingle Suppression of Fermi Acceleration in the Oval Billiard
Leonel, Edson Denis [UNESP]
title_short Suppression of Fermi Acceleration in the Oval Billiard
title_full Suppression of Fermi Acceleration in the Oval Billiard
title_fullStr Suppression of Fermi Acceleration in the Oval Billiard
title_full_unstemmed Suppression of Fermi Acceleration in the Oval Billiard
title_sort Suppression of Fermi Acceleration in the Oval Billiard
author Leonel, Edson Denis [UNESP]
author_facet Leonel, Edson Denis [UNESP]
author_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Leonel, Edson Denis [UNESP]
description We consider in this chapter the introduction of drag force in the oval billiard. As we have seen in Chap. 13 from the LRA conjecture, the chaotic dynamics in the static billiard is a sufficient condition to produce unlimited diffusion in the energy, i.e, Fermi acceleration, when a time perturbation to the boundary is introduced. We show in this chapter that the introduction of a drag force of the type F∝ - V, or F∝ ± V2 or F∝ - Vδ with δ≠ 1 and δ≠ 2 destroys the unlimited energy growth for an ensemble of particles. This result is a clear indication that Fermi acceleration is not a robust phenomena.
publishDate 2021
dc.date.none.fl_str_mv 2021-01-01
2022-05-01T08:45:05Z
2022-05-01T08:45:05Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bookPart
format bookPart
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/978-981-16-3544-1_14
Nonlinear Physical Science, p. 191-203.
1867-8459
1867-8440
http://hdl.handle.net/11449/233486
10.1007/978-981-16-3544-1_14
2-s2.0-85114317558
url http://dx.doi.org/10.1007/978-981-16-3544-1_14
http://hdl.handle.net/11449/233486
identifier_str_mv Nonlinear Physical Science, p. 191-203.
1867-8459
1867-8440
10.1007/978-981-16-3544-1_14
2-s2.0-85114317558
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Nonlinear Physical Science
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 191-203
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129315122970624