Designing Highly Photoactive Hybrid Aerogels for In-Flow Photocatalytic Contaminant Removal Using Silica-Coated Bacterial Nanocellulose Supports

Detalhes bibliográficos
Autor(a) principal: Almeida da Silva, Thaís Caroline [UNESP]
Data de Publicação: 2023
Outros Autores: Marchiori, Leonardo [UNESP], Oliveira Mattos, Bianca, Ullah, Sajjad, Barud, Hernane da Silva, Romano Domeneguetti, Rafael [UNESP], Rojas-Mantilla, Hernán Dario [UNESP], Boldrin Zanoni, Maria Valnice [UNESP], Rodrigues-Filho, Ubirajara Pereira, Ferreira-Neto, Elias Paiva, Ribeiro, Sidney José Lima [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1021/acsami.3c02008
http://hdl.handle.net/11449/249963
Resumo: This study explores the use of silica-coated bacterial nanocellulose (BC) scaffolds with bulk macroscopic yet nanometric internal pores/structures as functional supports for high surface area titania aerogel photocatalysts to design flexible, self-standing, porous, and recyclable BC@SiO2-TiO2 hybrid organic-inorganic aerogel membranes for effective in-flow photo-assisted removal of organic pollutants. The hybrid aerogels were prepared by sequential sol-gel deposition of the SiO2 layer over BC, followed by coating of the resulting BC@SiO2 membranes with a porous titania aerogel overlayer of high surface area using epoxide-driven gelation, hydrothermal crystallization, and subsequent supercritical drying. The silica interlayer between the nanocellulose biopolymer scaffold and the titania photocatalyst was found to greatly influence the structure and composition, particularly the TiO2 loading, of the prepared hybrid aerogel membranes, allowing the development of photochemically stable aerogel materials with increased surface area/pore volume and higher photocatalytic activity. The optimized BC@SiO2-TiO2 hybrid aerogel showed up to 12 times faster in-flow photocatalytic removal of methylene blue dye from aqueous solution in comparison with bare BC/TiO2 aerogels and outperformed most of the supported-titania materials reported earlier. Moreover, the developed hybrid aerogels were successfully employed to remove sertraline drug, a model emergent contaminant, from aqueous solution, thus further demonstrating their potential for water purification.
id UNSP_48e8215a11c4e2398c6fde610db39181
oai_identifier_str oai:repositorio.unesp.br:11449/249963
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Designing Highly Photoactive Hybrid Aerogels for In-Flow Photocatalytic Contaminant Removal Using Silica-Coated Bacterial Nanocellulose Supportsaerogelbacterial cellulosein-flow decontaminationphotocatalytic membraneSiO2TiO2This study explores the use of silica-coated bacterial nanocellulose (BC) scaffolds with bulk macroscopic yet nanometric internal pores/structures as functional supports for high surface area titania aerogel photocatalysts to design flexible, self-standing, porous, and recyclable BC@SiO2-TiO2 hybrid organic-inorganic aerogel membranes for effective in-flow photo-assisted removal of organic pollutants. The hybrid aerogels were prepared by sequential sol-gel deposition of the SiO2 layer over BC, followed by coating of the resulting BC@SiO2 membranes with a porous titania aerogel overlayer of high surface area using epoxide-driven gelation, hydrothermal crystallization, and subsequent supercritical drying. The silica interlayer between the nanocellulose biopolymer scaffold and the titania photocatalyst was found to greatly influence the structure and composition, particularly the TiO2 loading, of the prepared hybrid aerogel membranes, allowing the development of photochemically stable aerogel materials with increased surface area/pore volume and higher photocatalytic activity. The optimized BC@SiO2-TiO2 hybrid aerogel showed up to 12 times faster in-flow photocatalytic removal of methylene blue dye from aqueous solution in comparison with bare BC/TiO2 aerogels and outperformed most of the supported-titania materials reported earlier. Moreover, the developed hybrid aerogels were successfully employed to remove sertraline drug, a model emergent contaminant, from aqueous solution, thus further demonstrating their potential for water purification.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Higher Education Commission, PakistanInstitute of Chemistry São Paulo State University─UNESP, São PauloInstitute of Chemistry of São Carlos University of São Paulo─USP, São PauloInstitute of Chemical Sciences University of Peshawar─UOPUniversity of Araraquara─UNIARA, São PauloDepartment of Chemistry Federal University of Santa Cantarina─UFSC, Santa CatarinaInstitute of Chemistry São Paulo State University─UNESP, São PauloUniversidade Estadual Paulista (UNESP)Universidade de São Paulo (USP)University of Peshawar─UOPUniversity of Araraquara─UNIARAUniversidade Federal de Santa Catarina (UFSC)Almeida da Silva, Thaís Caroline [UNESP]Marchiori, Leonardo [UNESP]Oliveira Mattos, BiancaUllah, SajjadBarud, Hernane da SilvaRomano Domeneguetti, Rafael [UNESP]Rojas-Mantilla, Hernán Dario [UNESP]Boldrin Zanoni, Maria Valnice [UNESP]Rodrigues-Filho, Ubirajara PereiraFerreira-Neto, Elias PaivaRibeiro, Sidney José Lima [UNESP]2023-07-29T16:13:57Z2023-07-29T16:13:57Z2023-05-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article23146-23159http://dx.doi.org/10.1021/acsami.3c02008ACS Applied Materials and Interfaces, v. 15, n. 19, p. 23146-23159, 2023.1944-82521944-8244http://hdl.handle.net/11449/24996310.1021/acsami.3c020082-s2.0-85159611407Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengACS Applied Materials and Interfacesinfo:eu-repo/semantics/openAccess2023-07-29T16:13:57Zoai:repositorio.unesp.br:11449/249963Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:15:14.735066Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Designing Highly Photoactive Hybrid Aerogels for In-Flow Photocatalytic Contaminant Removal Using Silica-Coated Bacterial Nanocellulose Supports
title Designing Highly Photoactive Hybrid Aerogels for In-Flow Photocatalytic Contaminant Removal Using Silica-Coated Bacterial Nanocellulose Supports
spellingShingle Designing Highly Photoactive Hybrid Aerogels for In-Flow Photocatalytic Contaminant Removal Using Silica-Coated Bacterial Nanocellulose Supports
Almeida da Silva, Thaís Caroline [UNESP]
aerogel
bacterial cellulose
in-flow decontamination
photocatalytic membrane
SiO2
TiO2
title_short Designing Highly Photoactive Hybrid Aerogels for In-Flow Photocatalytic Contaminant Removal Using Silica-Coated Bacterial Nanocellulose Supports
title_full Designing Highly Photoactive Hybrid Aerogels for In-Flow Photocatalytic Contaminant Removal Using Silica-Coated Bacterial Nanocellulose Supports
title_fullStr Designing Highly Photoactive Hybrid Aerogels for In-Flow Photocatalytic Contaminant Removal Using Silica-Coated Bacterial Nanocellulose Supports
title_full_unstemmed Designing Highly Photoactive Hybrid Aerogels for In-Flow Photocatalytic Contaminant Removal Using Silica-Coated Bacterial Nanocellulose Supports
title_sort Designing Highly Photoactive Hybrid Aerogels for In-Flow Photocatalytic Contaminant Removal Using Silica-Coated Bacterial Nanocellulose Supports
author Almeida da Silva, Thaís Caroline [UNESP]
author_facet Almeida da Silva, Thaís Caroline [UNESP]
Marchiori, Leonardo [UNESP]
Oliveira Mattos, Bianca
Ullah, Sajjad
Barud, Hernane da Silva
Romano Domeneguetti, Rafael [UNESP]
Rojas-Mantilla, Hernán Dario [UNESP]
Boldrin Zanoni, Maria Valnice [UNESP]
Rodrigues-Filho, Ubirajara Pereira
Ferreira-Neto, Elias Paiva
Ribeiro, Sidney José Lima [UNESP]
author_role author
author2 Marchiori, Leonardo [UNESP]
Oliveira Mattos, Bianca
Ullah, Sajjad
Barud, Hernane da Silva
Romano Domeneguetti, Rafael [UNESP]
Rojas-Mantilla, Hernán Dario [UNESP]
Boldrin Zanoni, Maria Valnice [UNESP]
Rodrigues-Filho, Ubirajara Pereira
Ferreira-Neto, Elias Paiva
Ribeiro, Sidney José Lima [UNESP]
author2_role author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
Universidade de São Paulo (USP)
University of Peshawar─UOP
University of Araraquara─UNIARA
Universidade Federal de Santa Catarina (UFSC)
dc.contributor.author.fl_str_mv Almeida da Silva, Thaís Caroline [UNESP]
Marchiori, Leonardo [UNESP]
Oliveira Mattos, Bianca
Ullah, Sajjad
Barud, Hernane da Silva
Romano Domeneguetti, Rafael [UNESP]
Rojas-Mantilla, Hernán Dario [UNESP]
Boldrin Zanoni, Maria Valnice [UNESP]
Rodrigues-Filho, Ubirajara Pereira
Ferreira-Neto, Elias Paiva
Ribeiro, Sidney José Lima [UNESP]
dc.subject.por.fl_str_mv aerogel
bacterial cellulose
in-flow decontamination
photocatalytic membrane
SiO2
TiO2
topic aerogel
bacterial cellulose
in-flow decontamination
photocatalytic membrane
SiO2
TiO2
description This study explores the use of silica-coated bacterial nanocellulose (BC) scaffolds with bulk macroscopic yet nanometric internal pores/structures as functional supports for high surface area titania aerogel photocatalysts to design flexible, self-standing, porous, and recyclable BC@SiO2-TiO2 hybrid organic-inorganic aerogel membranes for effective in-flow photo-assisted removal of organic pollutants. The hybrid aerogels were prepared by sequential sol-gel deposition of the SiO2 layer over BC, followed by coating of the resulting BC@SiO2 membranes with a porous titania aerogel overlayer of high surface area using epoxide-driven gelation, hydrothermal crystallization, and subsequent supercritical drying. The silica interlayer between the nanocellulose biopolymer scaffold and the titania photocatalyst was found to greatly influence the structure and composition, particularly the TiO2 loading, of the prepared hybrid aerogel membranes, allowing the development of photochemically stable aerogel materials with increased surface area/pore volume and higher photocatalytic activity. The optimized BC@SiO2-TiO2 hybrid aerogel showed up to 12 times faster in-flow photocatalytic removal of methylene blue dye from aqueous solution in comparison with bare BC/TiO2 aerogels and outperformed most of the supported-titania materials reported earlier. Moreover, the developed hybrid aerogels were successfully employed to remove sertraline drug, a model emergent contaminant, from aqueous solution, thus further demonstrating their potential for water purification.
publishDate 2023
dc.date.none.fl_str_mv 2023-07-29T16:13:57Z
2023-07-29T16:13:57Z
2023-05-17
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1021/acsami.3c02008
ACS Applied Materials and Interfaces, v. 15, n. 19, p. 23146-23159, 2023.
1944-8252
1944-8244
http://hdl.handle.net/11449/249963
10.1021/acsami.3c02008
2-s2.0-85159611407
url http://dx.doi.org/10.1021/acsami.3c02008
http://hdl.handle.net/11449/249963
identifier_str_mv ACS Applied Materials and Interfaces, v. 15, n. 19, p. 23146-23159, 2023.
1944-8252
1944-8244
10.1021/acsami.3c02008
2-s2.0-85159611407
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv ACS Applied Materials and Interfaces
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 23146-23159
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128779828068352