The O(N) S-matrix monolith
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/JHEP04(2020)142 http://hdl.handle.net/11449/200318 |
Resumo: | We consider the scattering matrices of massive quantum field theories with no bound states and a global O(N) symmetry in two spacetime dimensions. In particular we explore the space of two-to-two S-matrices of particles of mass m transforming in the vector representation as restricted by the general conditions of unitarity, crossing, analyticity and O(N) symmetry. We found a rich structure in that space by using convex maximization and in particular its convex dual minimization problem. At the boundary of the allowed space special geometric points such as vertices were found to correspond to integrable models. The dual convex minimization problem provides a novel and useful approach to the problem allowing, for example, to prove that generically the S-matrices so obtained saturate unitarity and, in some cases, that they are at vertices of the allowed space. |
id |
UNSP_4bf5d2d98dd5ddfe0b2ff635025420ab |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/200318 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
The O(N) S-matrix monolithField Theories in Lower DimensionsIntegrable Field TheoriesNonperturbative EffectsScattering AmplitudesWe consider the scattering matrices of massive quantum field theories with no bound states and a global O(N) symmetry in two spacetime dimensions. In particular we explore the space of two-to-two S-matrices of particles of mass m transforming in the vector representation as restricted by the general conditions of unitarity, crossing, analyticity and O(N) symmetry. We found a rich structure in that space by using convex maximization and in particular its convex dual minimization problem. At the boundary of the allowed space special geometric points such as vertices were found to correspond to integrable models. The dual convex minimization problem provides a novel and useful approach to the problem allowing, for example, to prove that generically the S-matrices so obtained saturate unitarity and, in some cases, that they are at vertices of the allowed space.Perimeter Institute for Theoretical PhysicsDepartment of Physics and Astronomy & Guelph-Waterloo Physics Institute University of WaterlooInstitut de Physique Théorique, CEA SaclayDepartment of Physics and Astronomy Purdue UniversityPurdue Quantum Science and Engineering Institute (PQSEI) Purdue UniversityInstituto de Física Teórica UNESP ICTP South American Institute for Fundamental ResearchPhilippe Meyer Institute Physics Department École Normale Suṕerieure PSL Research University, 24 rue LhomondInstituto de Física Teórica UNESP ICTP South American Institute for Fundamental ResearchPerimeter Institute for Theoretical PhysicsUniversity of WaterlooInstitut de Physique ThéoriquePurdue UniversityUniversidade Estadual Paulista (Unesp)PSL Research UniversityCórdova, LucíaHe, YifeiKruczenski, MartinVieira, Pedro [UNESP]2020-12-12T02:03:26Z2020-12-12T02:03:26Z2020-04-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1007/JHEP04(2020)142Journal of High Energy Physics, v. 2020, n. 4, 2020.1029-84791126-6708http://hdl.handle.net/11449/20031810.1007/JHEP04(2020)1422-s2.0-85083779115Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of High Energy Physicsinfo:eu-repo/semantics/openAccess2021-10-23T10:37:13Zoai:repositorio.unesp.br:11449/200318Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:05:25.179414Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
The O(N) S-matrix monolith |
title |
The O(N) S-matrix monolith |
spellingShingle |
The O(N) S-matrix monolith Córdova, Lucía Field Theories in Lower Dimensions Integrable Field Theories Nonperturbative Effects Scattering Amplitudes |
title_short |
The O(N) S-matrix monolith |
title_full |
The O(N) S-matrix monolith |
title_fullStr |
The O(N) S-matrix monolith |
title_full_unstemmed |
The O(N) S-matrix monolith |
title_sort |
The O(N) S-matrix monolith |
author |
Córdova, Lucía |
author_facet |
Córdova, Lucía He, Yifei Kruczenski, Martin Vieira, Pedro [UNESP] |
author_role |
author |
author2 |
He, Yifei Kruczenski, Martin Vieira, Pedro [UNESP] |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Perimeter Institute for Theoretical Physics University of Waterloo Institut de Physique Théorique Purdue University Universidade Estadual Paulista (Unesp) PSL Research University |
dc.contributor.author.fl_str_mv |
Córdova, Lucía He, Yifei Kruczenski, Martin Vieira, Pedro [UNESP] |
dc.subject.por.fl_str_mv |
Field Theories in Lower Dimensions Integrable Field Theories Nonperturbative Effects Scattering Amplitudes |
topic |
Field Theories in Lower Dimensions Integrable Field Theories Nonperturbative Effects Scattering Amplitudes |
description |
We consider the scattering matrices of massive quantum field theories with no bound states and a global O(N) symmetry in two spacetime dimensions. In particular we explore the space of two-to-two S-matrices of particles of mass m transforming in the vector representation as restricted by the general conditions of unitarity, crossing, analyticity and O(N) symmetry. We found a rich structure in that space by using convex maximization and in particular its convex dual minimization problem. At the boundary of the allowed space special geometric points such as vertices were found to correspond to integrable models. The dual convex minimization problem provides a novel and useful approach to the problem allowing, for example, to prove that generically the S-matrices so obtained saturate unitarity and, in some cases, that they are at vertices of the allowed space. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-12T02:03:26Z 2020-12-12T02:03:26Z 2020-04-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/JHEP04(2020)142 Journal of High Energy Physics, v. 2020, n. 4, 2020. 1029-8479 1126-6708 http://hdl.handle.net/11449/200318 10.1007/JHEP04(2020)142 2-s2.0-85083779115 |
url |
http://dx.doi.org/10.1007/JHEP04(2020)142 http://hdl.handle.net/11449/200318 |
identifier_str_mv |
Journal of High Energy Physics, v. 2020, n. 4, 2020. 1029-8479 1126-6708 10.1007/JHEP04(2020)142 2-s2.0-85083779115 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal of High Energy Physics |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129488859430912 |