The O(N) S-matrix monolith

Detalhes bibliográficos
Autor(a) principal: Córdova, Lucía
Data de Publicação: 2020
Outros Autores: He, Yifei, Kruczenski, Martin, Vieira, Pedro [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/JHEP04(2020)142
http://hdl.handle.net/11449/200318
Resumo: We consider the scattering matrices of massive quantum field theories with no bound states and a global O(N) symmetry in two spacetime dimensions. In particular we explore the space of two-to-two S-matrices of particles of mass m transforming in the vector representation as restricted by the general conditions of unitarity, crossing, analyticity and O(N) symmetry. We found a rich structure in that space by using convex maximization and in particular its convex dual minimization problem. At the boundary of the allowed space special geometric points such as vertices were found to correspond to integrable models. The dual convex minimization problem provides a novel and useful approach to the problem allowing, for example, to prove that generically the S-matrices so obtained saturate unitarity and, in some cases, that they are at vertices of the allowed space.
id UNSP_4bf5d2d98dd5ddfe0b2ff635025420ab
oai_identifier_str oai:repositorio.unesp.br:11449/200318
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling The O(N) S-matrix monolithField Theories in Lower DimensionsIntegrable Field TheoriesNonperturbative EffectsScattering AmplitudesWe consider the scattering matrices of massive quantum field theories with no bound states and a global O(N) symmetry in two spacetime dimensions. In particular we explore the space of two-to-two S-matrices of particles of mass m transforming in the vector representation as restricted by the general conditions of unitarity, crossing, analyticity and O(N) symmetry. We found a rich structure in that space by using convex maximization and in particular its convex dual minimization problem. At the boundary of the allowed space special geometric points such as vertices were found to correspond to integrable models. The dual convex minimization problem provides a novel and useful approach to the problem allowing, for example, to prove that generically the S-matrices so obtained saturate unitarity and, in some cases, that they are at vertices of the allowed space.Perimeter Institute for Theoretical PhysicsDepartment of Physics and Astronomy & Guelph-Waterloo Physics Institute University of WaterlooInstitut de Physique Théorique, CEA SaclayDepartment of Physics and Astronomy Purdue UniversityPurdue Quantum Science and Engineering Institute (PQSEI) Purdue UniversityInstituto de Física Teórica UNESP ICTP South American Institute for Fundamental ResearchPhilippe Meyer Institute Physics Department École Normale Suṕerieure PSL Research University, 24 rue LhomondInstituto de Física Teórica UNESP ICTP South American Institute for Fundamental ResearchPerimeter Institute for Theoretical PhysicsUniversity of WaterlooInstitut de Physique ThéoriquePurdue UniversityUniversidade Estadual Paulista (Unesp)PSL Research UniversityCórdova, LucíaHe, YifeiKruczenski, MartinVieira, Pedro [UNESP]2020-12-12T02:03:26Z2020-12-12T02:03:26Z2020-04-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1007/JHEP04(2020)142Journal of High Energy Physics, v. 2020, n. 4, 2020.1029-84791126-6708http://hdl.handle.net/11449/20031810.1007/JHEP04(2020)1422-s2.0-85083779115Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of High Energy Physicsinfo:eu-repo/semantics/openAccess2021-10-23T10:37:13Zoai:repositorio.unesp.br:11449/200318Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:05:25.179414Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv The O(N) S-matrix monolith
title The O(N) S-matrix monolith
spellingShingle The O(N) S-matrix monolith
Córdova, Lucía
Field Theories in Lower Dimensions
Integrable Field Theories
Nonperturbative Effects
Scattering Amplitudes
title_short The O(N) S-matrix monolith
title_full The O(N) S-matrix monolith
title_fullStr The O(N) S-matrix monolith
title_full_unstemmed The O(N) S-matrix monolith
title_sort The O(N) S-matrix monolith
author Córdova, Lucía
author_facet Córdova, Lucía
He, Yifei
Kruczenski, Martin
Vieira, Pedro [UNESP]
author_role author
author2 He, Yifei
Kruczenski, Martin
Vieira, Pedro [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Perimeter Institute for Theoretical Physics
University of Waterloo
Institut de Physique Théorique
Purdue University
Universidade Estadual Paulista (Unesp)
PSL Research University
dc.contributor.author.fl_str_mv Córdova, Lucía
He, Yifei
Kruczenski, Martin
Vieira, Pedro [UNESP]
dc.subject.por.fl_str_mv Field Theories in Lower Dimensions
Integrable Field Theories
Nonperturbative Effects
Scattering Amplitudes
topic Field Theories in Lower Dimensions
Integrable Field Theories
Nonperturbative Effects
Scattering Amplitudes
description We consider the scattering matrices of massive quantum field theories with no bound states and a global O(N) symmetry in two spacetime dimensions. In particular we explore the space of two-to-two S-matrices of particles of mass m transforming in the vector representation as restricted by the general conditions of unitarity, crossing, analyticity and O(N) symmetry. We found a rich structure in that space by using convex maximization and in particular its convex dual minimization problem. At the boundary of the allowed space special geometric points such as vertices were found to correspond to integrable models. The dual convex minimization problem provides a novel and useful approach to the problem allowing, for example, to prove that generically the S-matrices so obtained saturate unitarity and, in some cases, that they are at vertices of the allowed space.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-12T02:03:26Z
2020-12-12T02:03:26Z
2020-04-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/JHEP04(2020)142
Journal of High Energy Physics, v. 2020, n. 4, 2020.
1029-8479
1126-6708
http://hdl.handle.net/11449/200318
10.1007/JHEP04(2020)142
2-s2.0-85083779115
url http://dx.doi.org/10.1007/JHEP04(2020)142
http://hdl.handle.net/11449/200318
identifier_str_mv Journal of High Energy Physics, v. 2020, n. 4, 2020.
1029-8479
1126-6708
10.1007/JHEP04(2020)142
2-s2.0-85083779115
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of High Energy Physics
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129488859430912