OntoSmart: Um modelo de recuperação de informação baseado em ontologia
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1590/1981-5344/2081 http://hdl.handle.net/11449/179136 |
Resumo: | Information retrieval system is a mediator element between a stock of information and its users. Its effectiveness depends on representation language of information items and requests of its users. This work presents an ontology-based information retrieval model which uses the formal structure of Vector Space Model. The vector that represent a document is created during the automatic indexing process, in which an ontology provide new terms in order to semantically enrich that representation. The search vector is created from a query expansion process, in which new terms are added in the search expression initially formulated by the user from inferences in the ontology. Using the proposed model, the OntoSmart system is being developed. Preliminary results show a significant improvement in the precision of search results. |
id |
UNSP_4c104d350d94d8f514b2e2647eee4f8d |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/179136 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
OntoSmart: Um modelo de recuperação de informação baseado em ontologiaOntosmart: An ontology-based information retrievel modelAutomatic IndexingOntology-based Information RetrievalQuery ExpansionVector Space ModelInformation retrieval system is a mediator element between a stock of information and its users. Its effectiveness depends on representation language of information items and requests of its users. This work presents an ontology-based information retrieval model which uses the formal structure of Vector Space Model. The vector that represent a document is created during the automatic indexing process, in which an ontology provide new terms in order to semantically enrich that representation. The search vector is created from a query expansion process, in which new terms are added in the search expression initially formulated by the user from inferences in the ontology. Using the proposed model, the OntoSmart system is being developed. Preliminary results show a significant improvement in the precision of search results.Departamento de Ciência da Informação Universidade Estadual Paulista 'Julio Mesquita Filho' (UNESP)Universidade Federal da ParaíbaDepartamento de Ciência da Informação Universidade Estadual Paulista 'Julio Mesquita Filho' (UNESP)Universidade Estadual Paulista (Unesp)Universidade Federal da Paraíba (UFPB)Ferneda, Edberto [UNESP]Dias, Guilherme Ataíde2018-12-11T17:33:54Z2018-12-11T17:33:54Z2017-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article170-187application/pdfhttp://dx.doi.org/10.1590/1981-5344/2081Perspectivas em Ciencia da Informacao, v. 22, n. 2, p. 170-187, 2017.1981-53441413-9936http://hdl.handle.net/11449/17913610.1590/1981-5344/2081S1413-993620170002001702-s2.0-85028522101S1413-99362017000200170.pdf85965682286768200000-0002-8808-1217Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPporPerspectivas em Ciencia da Informacao0,203info:eu-repo/semantics/openAccess2023-10-28T06:12:10Zoai:repositorio.unesp.br:11449/179136Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:18:14.537462Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
OntoSmart: Um modelo de recuperação de informação baseado em ontologia Ontosmart: An ontology-based information retrievel model |
title |
OntoSmart: Um modelo de recuperação de informação baseado em ontologia |
spellingShingle |
OntoSmart: Um modelo de recuperação de informação baseado em ontologia Ferneda, Edberto [UNESP] Automatic Indexing Ontology-based Information Retrieval Query Expansion Vector Space Model |
title_short |
OntoSmart: Um modelo de recuperação de informação baseado em ontologia |
title_full |
OntoSmart: Um modelo de recuperação de informação baseado em ontologia |
title_fullStr |
OntoSmart: Um modelo de recuperação de informação baseado em ontologia |
title_full_unstemmed |
OntoSmart: Um modelo de recuperação de informação baseado em ontologia |
title_sort |
OntoSmart: Um modelo de recuperação de informação baseado em ontologia |
author |
Ferneda, Edberto [UNESP] |
author_facet |
Ferneda, Edberto [UNESP] Dias, Guilherme Ataíde |
author_role |
author |
author2 |
Dias, Guilherme Ataíde |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade Federal da Paraíba (UFPB) |
dc.contributor.author.fl_str_mv |
Ferneda, Edberto [UNESP] Dias, Guilherme Ataíde |
dc.subject.por.fl_str_mv |
Automatic Indexing Ontology-based Information Retrieval Query Expansion Vector Space Model |
topic |
Automatic Indexing Ontology-based Information Retrieval Query Expansion Vector Space Model |
description |
Information retrieval system is a mediator element between a stock of information and its users. Its effectiveness depends on representation language of information items and requests of its users. This work presents an ontology-based information retrieval model which uses the formal structure of Vector Space Model. The vector that represent a document is created during the automatic indexing process, in which an ontology provide new terms in order to semantically enrich that representation. The search vector is created from a query expansion process, in which new terms are added in the search expression initially formulated by the user from inferences in the ontology. Using the proposed model, the OntoSmart system is being developed. Preliminary results show a significant improvement in the precision of search results. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01-01 2018-12-11T17:33:54Z 2018-12-11T17:33:54Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1590/1981-5344/2081 Perspectivas em Ciencia da Informacao, v. 22, n. 2, p. 170-187, 2017. 1981-5344 1413-9936 http://hdl.handle.net/11449/179136 10.1590/1981-5344/2081 S1413-99362017000200170 2-s2.0-85028522101 S1413-99362017000200170.pdf 8596568228676820 0000-0002-8808-1217 |
url |
http://dx.doi.org/10.1590/1981-5344/2081 http://hdl.handle.net/11449/179136 |
identifier_str_mv |
Perspectivas em Ciencia da Informacao, v. 22, n. 2, p. 170-187, 2017. 1981-5344 1413-9936 10.1590/1981-5344/2081 S1413-99362017000200170 2-s2.0-85028522101 S1413-99362017000200170.pdf 8596568228676820 0000-0002-8808-1217 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
Perspectivas em Ciencia da Informacao 0,203 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
170-187 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128631415767040 |