Fast determination of beef quality parameters with time-domain nuclear magnetic resonance spectroscopy and chemometrics
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
DOI: | 10.1016/j.talanta.2013.02.070 |
Texto Completo: | http://www.sciencedirect.com/science/article/pii/S0039914013001446# http://hdl.handle.net/11449/123519 |
Resumo: | The noteworthy of this study is to predict seven quality parameters for beef samples using time-domain nuclear magnetic resonance (TD-NMR) relaxometry data and multivariate models. Samples from 61 Bonsmara heifers were separated into five groups based on genetic (breeding composition) and feed system (grain and grass feed). Seven sample parameters were analyzed by reference methods; among them, three sensorial parameters, flavor, juiciness and tenderness and four physicochemical parameters, cooking loss, fat and moisture content and instrumental tenderness using Warner Bratzler shear force (WBSF). The raw beef samples of the same animals were analyzed by TD-NMR relaxometry using Carr-Purcell-Meiboom-Gill (CPMG) and Continuous Wave-Free Precession (CWFP) sequences. Regression models computed by partial least squares (PLS) chemometric technique using CPMG and CWFP data and the results of the classical analysis were constructed. The results allowed for the prediction of aforementioned seven properties. The predictive ability of the method was evaluated using the root mean square error (RMSE) for the calibration (RMSEC) and validation (RMSEP) data sets. The reference and predicted values showed no significant differences at a 95% confidence level. |
id |
UNSP_4d3ec857ca2377d5a11afc3cbe54c591 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/123519 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Fast determination of beef quality parameters with time-domain nuclear magnetic resonance spectroscopy and chemometricsThe noteworthy of this study is to predict seven quality parameters for beef samples using time-domain nuclear magnetic resonance (TD-NMR) relaxometry data and multivariate models. Samples from 61 Bonsmara heifers were separated into five groups based on genetic (breeding composition) and feed system (grain and grass feed). Seven sample parameters were analyzed by reference methods; among them, three sensorial parameters, flavor, juiciness and tenderness and four physicochemical parameters, cooking loss, fat and moisture content and instrumental tenderness using Warner Bratzler shear force (WBSF). The raw beef samples of the same animals were analyzed by TD-NMR relaxometry using Carr-Purcell-Meiboom-Gill (CPMG) and Continuous Wave-Free Precession (CWFP) sequences. Regression models computed by partial least squares (PLS) chemometric technique using CPMG and CWFP data and the results of the classical analysis were constructed. The results allowed for the prediction of aforementioned seven properties. The predictive ability of the method was evaluated using the root mean square error (RMSE) for the calibration (RMSEC) and validation (RMSEP) data sets. The reference and predicted values showed no significant differences at a 95% confidence level.Universidade Estadual Paulista Júlio de Mesquita Filho, Departamento de Química Analítica, Instituto de Química de Araraquara, Araraquara, Rua Professor Francisco Degni, 55, Jardim Quitandinha, CEP 14800060, SP, BrasilUniversidade Estadual Paulista Júlio de Mesquita Filho, Departamento de Química Analítica, Instituto de Química de Araraquara, Araraquara, Rua Professor Francisco Degni, 55, Jardim Quitandinha, CEP 14800060, SP, BrasilEmbrapa Instrumentação, Rua Quinze de Novembro 1452, São Carlos, SP 13561-206, BrazilDepartamento de Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-193, BrazilUniversidade Estadual Paulista (Unesp)Pereira, Fabiola Manhas Verbi [UNESP]Pflanzer, Sérgio BertelliGomig, ThaísaGomes, Carolina LugnaniFelício, Pedro Eduardo deColnago, Luiz Alberto2015-05-15T13:30:21Z2015-05-15T13:30:21Z2013info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article88-91http://www.sciencedirect.com/science/article/pii/S0039914013001446#Talanta, v. 108, p. 88-91, 2013.0039-9140http://hdl.handle.net/11449/12351910.1016/j.talanta.2013.02.07057044454736540240000-0002-8117-2108Currículo Lattesreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengTalanta4.2441,186info:eu-repo/semantics/openAccess2021-10-23T22:04:19Zoai:repositorio.unesp.br:11449/123519Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:59:57.794901Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Fast determination of beef quality parameters with time-domain nuclear magnetic resonance spectroscopy and chemometrics |
title |
Fast determination of beef quality parameters with time-domain nuclear magnetic resonance spectroscopy and chemometrics |
spellingShingle |
Fast determination of beef quality parameters with time-domain nuclear magnetic resonance spectroscopy and chemometrics Fast determination of beef quality parameters with time-domain nuclear magnetic resonance spectroscopy and chemometrics Pereira, Fabiola Manhas Verbi [UNESP] Pereira, Fabiola Manhas Verbi [UNESP] |
title_short |
Fast determination of beef quality parameters with time-domain nuclear magnetic resonance spectroscopy and chemometrics |
title_full |
Fast determination of beef quality parameters with time-domain nuclear magnetic resonance spectroscopy and chemometrics |
title_fullStr |
Fast determination of beef quality parameters with time-domain nuclear magnetic resonance spectroscopy and chemometrics Fast determination of beef quality parameters with time-domain nuclear magnetic resonance spectroscopy and chemometrics |
title_full_unstemmed |
Fast determination of beef quality parameters with time-domain nuclear magnetic resonance spectroscopy and chemometrics Fast determination of beef quality parameters with time-domain nuclear magnetic resonance spectroscopy and chemometrics |
title_sort |
Fast determination of beef quality parameters with time-domain nuclear magnetic resonance spectroscopy and chemometrics |
author |
Pereira, Fabiola Manhas Verbi [UNESP] |
author_facet |
Pereira, Fabiola Manhas Verbi [UNESP] Pereira, Fabiola Manhas Verbi [UNESP] Pflanzer, Sérgio Bertelli Gomig, Thaísa Gomes, Carolina Lugnani Felício, Pedro Eduardo de Colnago, Luiz Alberto Pflanzer, Sérgio Bertelli Gomig, Thaísa Gomes, Carolina Lugnani Felício, Pedro Eduardo de Colnago, Luiz Alberto |
author_role |
author |
author2 |
Pflanzer, Sérgio Bertelli Gomig, Thaísa Gomes, Carolina Lugnani Felício, Pedro Eduardo de Colnago, Luiz Alberto |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Pereira, Fabiola Manhas Verbi [UNESP] Pflanzer, Sérgio Bertelli Gomig, Thaísa Gomes, Carolina Lugnani Felício, Pedro Eduardo de Colnago, Luiz Alberto |
description |
The noteworthy of this study is to predict seven quality parameters for beef samples using time-domain nuclear magnetic resonance (TD-NMR) relaxometry data and multivariate models. Samples from 61 Bonsmara heifers were separated into five groups based on genetic (breeding composition) and feed system (grain and grass feed). Seven sample parameters were analyzed by reference methods; among them, three sensorial parameters, flavor, juiciness and tenderness and four physicochemical parameters, cooking loss, fat and moisture content and instrumental tenderness using Warner Bratzler shear force (WBSF). The raw beef samples of the same animals were analyzed by TD-NMR relaxometry using Carr-Purcell-Meiboom-Gill (CPMG) and Continuous Wave-Free Precession (CWFP) sequences. Regression models computed by partial least squares (PLS) chemometric technique using CPMG and CWFP data and the results of the classical analysis were constructed. The results allowed for the prediction of aforementioned seven properties. The predictive ability of the method was evaluated using the root mean square error (RMSE) for the calibration (RMSEC) and validation (RMSEP) data sets. The reference and predicted values showed no significant differences at a 95% confidence level. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013 2015-05-15T13:30:21Z 2015-05-15T13:30:21Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.sciencedirect.com/science/article/pii/S0039914013001446# Talanta, v. 108, p. 88-91, 2013. 0039-9140 http://hdl.handle.net/11449/123519 10.1016/j.talanta.2013.02.070 5704445473654024 0000-0002-8117-2108 |
url |
http://www.sciencedirect.com/science/article/pii/S0039914013001446# http://hdl.handle.net/11449/123519 |
identifier_str_mv |
Talanta, v. 108, p. 88-91, 2013. 0039-9140 10.1016/j.talanta.2013.02.070 5704445473654024 0000-0002-8117-2108 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Talanta 4.244 1,186 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
88-91 |
dc.source.none.fl_str_mv |
Currículo Lattes reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1822180794386350081 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.talanta.2013.02.070 |