Handwritten feature descriptor methods applied to fruit classification
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/978-3-319-54978-1_87 http://hdl.handle.net/11449/175744 |
Resumo: | Several works have presented distinct ways to compute feature descriptor from different applications and domains. A main issue in Computer Vision systems is how to choose the best descriptor for specific domains. Usually, Computer Vision experts try several combination of descriptor until reach a good result of classification, clustering or retrieving – for instance, the best descriptor is that capable of discriminating the dataset images and reach high correct classification rates. In this paper, we used feature descriptors commonly applied in handwritten images to improve the image classification from fruit datasets. We present distinct combinations of Zoning and Character-Edge Distance methods to generate feature descriptor from fruits. The combination of these two descriptor with Discrete Fourier Transform led us to a new approach for acquire features from fruit images. In the experiments, the new approaches are compared with the main descriptors presented in the literature and our best approach of feature descriptors reaches a correct classification rate of 97.5%. Additionally, we also show how to perform a detailed inspection in feature spaces through an image visualization technique based on a similarity trees known as Neigbor Joining (NJ). |
id |
UNSP_4d7f72eed411d5cbe6a0bda00164da6b |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/175744 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Handwritten feature descriptor methods applied to fruit classificationComputer visionFeature descriptorFruit classificationHandwritten characterImage visualizationSeveral works have presented distinct ways to compute feature descriptor from different applications and domains. A main issue in Computer Vision systems is how to choose the best descriptor for specific domains. Usually, Computer Vision experts try several combination of descriptor until reach a good result of classification, clustering or retrieving – for instance, the best descriptor is that capable of discriminating the dataset images and reach high correct classification rates. In this paper, we used feature descriptors commonly applied in handwritten images to improve the image classification from fruit datasets. We present distinct combinations of Zoning and Character-Edge Distance methods to generate feature descriptor from fruits. The combination of these two descriptor with Discrete Fourier Transform led us to a new approach for acquire features from fruit images. In the experiments, the new approaches are compared with the main descriptors presented in the literature and our best approach of feature descriptors reaches a correct classification rate of 97.5%. Additionally, we also show how to perform a detailed inspection in feature spaces through an image visualization technique based on a similarity trees known as Neigbor Joining (NJ).Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Departamento de Matemática e Computação Faculdade de Ciências e Tecnologia UNESP – Univ Estadual Paulista Presidente PrudenteDepartamento de Matemática e Computação Faculdade de Ciências e Tecnologia UNESP – Univ Estadual Paulista Presidente PrudenteFAPESP: 16/11707-6FAPESP: 2013/03452-0Universidade Estadual Paulista (Unesp)Macanhã, Priscila Alves [UNESP]Eler, Danilo Medeiros [UNESP]Garcia, Rogério Eduardo [UNESP]Marcílio Junior, Wilson Estécio [UNESP]2018-12-11T17:17:19Z2018-12-11T17:17:19Z2018-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject699-705http://dx.doi.org/10.1007/978-3-319-54978-1_87Advances in Intelligent Systems and Computing, v. 558, p. 699-705.2194-5357http://hdl.handle.net/11449/17574410.1007/978-3-319-54978-1_872-s2.0-8504053947080310125732593610000-0003-1248-528XScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengAdvances in Intelligent Systems and Computinginfo:eu-repo/semantics/openAccess2024-06-19T14:32:27Zoai:repositorio.unesp.br:11449/175744Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:53:25.950165Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Handwritten feature descriptor methods applied to fruit classification |
title |
Handwritten feature descriptor methods applied to fruit classification |
spellingShingle |
Handwritten feature descriptor methods applied to fruit classification Macanhã, Priscila Alves [UNESP] Computer vision Feature descriptor Fruit classification Handwritten character Image visualization |
title_short |
Handwritten feature descriptor methods applied to fruit classification |
title_full |
Handwritten feature descriptor methods applied to fruit classification |
title_fullStr |
Handwritten feature descriptor methods applied to fruit classification |
title_full_unstemmed |
Handwritten feature descriptor methods applied to fruit classification |
title_sort |
Handwritten feature descriptor methods applied to fruit classification |
author |
Macanhã, Priscila Alves [UNESP] |
author_facet |
Macanhã, Priscila Alves [UNESP] Eler, Danilo Medeiros [UNESP] Garcia, Rogério Eduardo [UNESP] Marcílio Junior, Wilson Estécio [UNESP] |
author_role |
author |
author2 |
Eler, Danilo Medeiros [UNESP] Garcia, Rogério Eduardo [UNESP] Marcílio Junior, Wilson Estécio [UNESP] |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Macanhã, Priscila Alves [UNESP] Eler, Danilo Medeiros [UNESP] Garcia, Rogério Eduardo [UNESP] Marcílio Junior, Wilson Estécio [UNESP] |
dc.subject.por.fl_str_mv |
Computer vision Feature descriptor Fruit classification Handwritten character Image visualization |
topic |
Computer vision Feature descriptor Fruit classification Handwritten character Image visualization |
description |
Several works have presented distinct ways to compute feature descriptor from different applications and domains. A main issue in Computer Vision systems is how to choose the best descriptor for specific domains. Usually, Computer Vision experts try several combination of descriptor until reach a good result of classification, clustering or retrieving – for instance, the best descriptor is that capable of discriminating the dataset images and reach high correct classification rates. In this paper, we used feature descriptors commonly applied in handwritten images to improve the image classification from fruit datasets. We present distinct combinations of Zoning and Character-Edge Distance methods to generate feature descriptor from fruits. The combination of these two descriptor with Discrete Fourier Transform led us to a new approach for acquire features from fruit images. In the experiments, the new approaches are compared with the main descriptors presented in the literature and our best approach of feature descriptors reaches a correct classification rate of 97.5%. Additionally, we also show how to perform a detailed inspection in feature spaces through an image visualization technique based on a similarity trees known as Neigbor Joining (NJ). |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12-11T17:17:19Z 2018-12-11T17:17:19Z 2018-01-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/978-3-319-54978-1_87 Advances in Intelligent Systems and Computing, v. 558, p. 699-705. 2194-5357 http://hdl.handle.net/11449/175744 10.1007/978-3-319-54978-1_87 2-s2.0-85040539470 8031012573259361 0000-0003-1248-528X |
url |
http://dx.doi.org/10.1007/978-3-319-54978-1_87 http://hdl.handle.net/11449/175744 |
identifier_str_mv |
Advances in Intelligent Systems and Computing, v. 558, p. 699-705. 2194-5357 10.1007/978-3-319-54978-1_87 2-s2.0-85040539470 8031012573259361 0000-0003-1248-528X |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Advances in Intelligent Systems and Computing |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
699-705 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129470966530048 |