Handwritten feature descriptor methods applied to fruit classification

Detalhes bibliográficos
Autor(a) principal: Macanhã, Priscila Alves [UNESP]
Data de Publicação: 2018
Outros Autores: Eler, Danilo Medeiros [UNESP], Garcia, Rogério Eduardo [UNESP], Marcílio Junior, Wilson Estécio [UNESP]
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/978-3-319-54978-1_87
http://hdl.handle.net/11449/175744
Resumo: Several works have presented distinct ways to compute feature descriptor from different applications and domains. A main issue in Computer Vision systems is how to choose the best descriptor for specific domains. Usually, Computer Vision experts try several combination of descriptor until reach a good result of classification, clustering or retrieving – for instance, the best descriptor is that capable of discriminating the dataset images and reach high correct classification rates. In this paper, we used feature descriptors commonly applied in handwritten images to improve the image classification from fruit datasets. We present distinct combinations of Zoning and Character-Edge Distance methods to generate feature descriptor from fruits. The combination of these two descriptor with Discrete Fourier Transform led us to a new approach for acquire features from fruit images. In the experiments, the new approaches are compared with the main descriptors presented in the literature and our best approach of feature descriptors reaches a correct classification rate of 97.5%. Additionally, we also show how to perform a detailed inspection in feature spaces through an image visualization technique based on a similarity trees known as Neigbor Joining (NJ).
id UNSP_4d7f72eed411d5cbe6a0bda00164da6b
oai_identifier_str oai:repositorio.unesp.br:11449/175744
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Handwritten feature descriptor methods applied to fruit classificationComputer visionFeature descriptorFruit classificationHandwritten characterImage visualizationSeveral works have presented distinct ways to compute feature descriptor from different applications and domains. A main issue in Computer Vision systems is how to choose the best descriptor for specific domains. Usually, Computer Vision experts try several combination of descriptor until reach a good result of classification, clustering or retrieving – for instance, the best descriptor is that capable of discriminating the dataset images and reach high correct classification rates. In this paper, we used feature descriptors commonly applied in handwritten images to improve the image classification from fruit datasets. We present distinct combinations of Zoning and Character-Edge Distance methods to generate feature descriptor from fruits. The combination of these two descriptor with Discrete Fourier Transform led us to a new approach for acquire features from fruit images. In the experiments, the new approaches are compared with the main descriptors presented in the literature and our best approach of feature descriptors reaches a correct classification rate of 97.5%. Additionally, we also show how to perform a detailed inspection in feature spaces through an image visualization technique based on a similarity trees known as Neigbor Joining (NJ).Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Departamento de Matemática e Computação Faculdade de Ciências e Tecnologia UNESP – Univ Estadual Paulista Presidente PrudenteDepartamento de Matemática e Computação Faculdade de Ciências e Tecnologia UNESP – Univ Estadual Paulista Presidente PrudenteFAPESP: 16/11707-6FAPESP: 2013/03452-0Universidade Estadual Paulista (Unesp)Macanhã, Priscila Alves [UNESP]Eler, Danilo Medeiros [UNESP]Garcia, Rogério Eduardo [UNESP]Marcílio Junior, Wilson Estécio [UNESP]2018-12-11T17:17:19Z2018-12-11T17:17:19Z2018-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject699-705http://dx.doi.org/10.1007/978-3-319-54978-1_87Advances in Intelligent Systems and Computing, v. 558, p. 699-705.2194-5357http://hdl.handle.net/11449/17574410.1007/978-3-319-54978-1_872-s2.0-8504053947080310125732593610000-0003-1248-528XScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengAdvances in Intelligent Systems and Computinginfo:eu-repo/semantics/openAccess2024-06-19T14:32:27Zoai:repositorio.unesp.br:11449/175744Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:53:25.950165Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Handwritten feature descriptor methods applied to fruit classification
title Handwritten feature descriptor methods applied to fruit classification
spellingShingle Handwritten feature descriptor methods applied to fruit classification
Macanhã, Priscila Alves [UNESP]
Computer vision
Feature descriptor
Fruit classification
Handwritten character
Image visualization
title_short Handwritten feature descriptor methods applied to fruit classification
title_full Handwritten feature descriptor methods applied to fruit classification
title_fullStr Handwritten feature descriptor methods applied to fruit classification
title_full_unstemmed Handwritten feature descriptor methods applied to fruit classification
title_sort Handwritten feature descriptor methods applied to fruit classification
author Macanhã, Priscila Alves [UNESP]
author_facet Macanhã, Priscila Alves [UNESP]
Eler, Danilo Medeiros [UNESP]
Garcia, Rogério Eduardo [UNESP]
Marcílio Junior, Wilson Estécio [UNESP]
author_role author
author2 Eler, Danilo Medeiros [UNESP]
Garcia, Rogério Eduardo [UNESP]
Marcílio Junior, Wilson Estécio [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Macanhã, Priscila Alves [UNESP]
Eler, Danilo Medeiros [UNESP]
Garcia, Rogério Eduardo [UNESP]
Marcílio Junior, Wilson Estécio [UNESP]
dc.subject.por.fl_str_mv Computer vision
Feature descriptor
Fruit classification
Handwritten character
Image visualization
topic Computer vision
Feature descriptor
Fruit classification
Handwritten character
Image visualization
description Several works have presented distinct ways to compute feature descriptor from different applications and domains. A main issue in Computer Vision systems is how to choose the best descriptor for specific domains. Usually, Computer Vision experts try several combination of descriptor until reach a good result of classification, clustering or retrieving – for instance, the best descriptor is that capable of discriminating the dataset images and reach high correct classification rates. In this paper, we used feature descriptors commonly applied in handwritten images to improve the image classification from fruit datasets. We present distinct combinations of Zoning and Character-Edge Distance methods to generate feature descriptor from fruits. The combination of these two descriptor with Discrete Fourier Transform led us to a new approach for acquire features from fruit images. In the experiments, the new approaches are compared with the main descriptors presented in the literature and our best approach of feature descriptors reaches a correct classification rate of 97.5%. Additionally, we also show how to perform a detailed inspection in feature spaces through an image visualization technique based on a similarity trees known as Neigbor Joining (NJ).
publishDate 2018
dc.date.none.fl_str_mv 2018-12-11T17:17:19Z
2018-12-11T17:17:19Z
2018-01-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/978-3-319-54978-1_87
Advances in Intelligent Systems and Computing, v. 558, p. 699-705.
2194-5357
http://hdl.handle.net/11449/175744
10.1007/978-3-319-54978-1_87
2-s2.0-85040539470
8031012573259361
0000-0003-1248-528X
url http://dx.doi.org/10.1007/978-3-319-54978-1_87
http://hdl.handle.net/11449/175744
identifier_str_mv Advances in Intelligent Systems and Computing, v. 558, p. 699-705.
2194-5357
10.1007/978-3-319-54978-1_87
2-s2.0-85040539470
8031012573259361
0000-0003-1248-528X
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Advances in Intelligent Systems and Computing
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 699-705
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129470966530048