Topological quantum codes from lattices partition on the n-dimensional flat tori

Detalhes bibliográficos
Autor(a) principal: de Carvalho, Edson Donizete [UNESP]
Data de Publicação: 2021
Outros Autores: Soares, Waldir Silva, da Silva, Eduardo Brandani
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.3390/e23080959
http://hdl.handle.net/11449/222115
Resumo: In this work, we show that an n-dimensional sublattice Λ′ = mΛ of an n-dimensional lattice Λ induces a G = Znm tessellation in the flat torus Tβ′ = Rn/Λ′, where the group G is isomorphic to the lattice partition Λ/Λ′ . As a consequence, we obtain, via this technique, toric codes of parameters [[2m2, 2, m]], [[3m3, 3, m]] and [[6m4, 6, m2 ]] from the lattices Z2, Z3 and Z4, respectively. In particular, for n = 2, if Λ1 is either the lattice Z2 or a hexagonal lattice, through lattice partition, we obtain two equivalent ways to cover the fundamental cell P′0of each hexagonal sublattice Λ′ of hexagonal lattices Λ, using either the fundamental cell P0 or the Voronoi cell V0 . These partitions allow us to present new classes of toric codes with parameters [[3m2, 2, m]] and color codes with parameters [[18m2, 4, 4m]] in the flat torus from families of hexagonal lattices in R2 .
id UNSP_4e567c1e15cafcc168c98d89a385d469
oai_identifier_str oai:repositorio.unesp.br:11449/222115
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Topological quantum codes from lattices partition on the n-dimensional flat toriColor codesFlat torusLattice partitionSurface codesToric codesIn this work, we show that an n-dimensional sublattice Λ′ = mΛ of an n-dimensional lattice Λ induces a G = Znm tessellation in the flat torus Tβ′ = Rn/Λ′, where the group G is isomorphic to the lattice partition Λ/Λ′ . As a consequence, we obtain, via this technique, toric codes of parameters [[2m2, 2, m]], [[3m3, 3, m]] and [[6m4, 6, m2 ]] from the lattices Z2, Z3 and Z4, respectively. In particular, for n = 2, if Λ1 is either the lattice Z2 or a hexagonal lattice, through lattice partition, we obtain two equivalent ways to cover the fundamental cell P′0of each hexagonal sublattice Λ′ of hexagonal lattices Λ, using either the fundamental cell P0 or the Voronoi cell V0 . These partitions allow us to present new classes of toric codes with parameters [[3m2, 2, m]] and color codes with parameters [[18m2, 4, 4m]] in the flat torus from families of hexagonal lattices in R2 .Department of Mathematics UNESPDepartment of Mathematics UTFPRDepartament of Mathematics UEMDepartment of Mathematics UNESPUniversidade Estadual Paulista (UNESP)UTFPRUniversidade Estadual de Maringá (UEM)de Carvalho, Edson Donizete [UNESP]Soares, Waldir Silvada Silva, Eduardo Brandani2022-04-28T19:42:32Z2022-04-28T19:42:32Z2021-08-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.3390/e23080959Entropy, v. 23, n. 8, 2021.1099-4300http://hdl.handle.net/11449/22211510.3390/e230809592-s2.0-85111730367Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengEntropyinfo:eu-repo/semantics/openAccess2022-04-28T19:42:32Zoai:repositorio.unesp.br:11449/222115Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:38:53.830005Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Topological quantum codes from lattices partition on the n-dimensional flat tori
title Topological quantum codes from lattices partition on the n-dimensional flat tori
spellingShingle Topological quantum codes from lattices partition on the n-dimensional flat tori
de Carvalho, Edson Donizete [UNESP]
Color codes
Flat torus
Lattice partition
Surface codes
Toric codes
title_short Topological quantum codes from lattices partition on the n-dimensional flat tori
title_full Topological quantum codes from lattices partition on the n-dimensional flat tori
title_fullStr Topological quantum codes from lattices partition on the n-dimensional flat tori
title_full_unstemmed Topological quantum codes from lattices partition on the n-dimensional flat tori
title_sort Topological quantum codes from lattices partition on the n-dimensional flat tori
author de Carvalho, Edson Donizete [UNESP]
author_facet de Carvalho, Edson Donizete [UNESP]
Soares, Waldir Silva
da Silva, Eduardo Brandani
author_role author
author2 Soares, Waldir Silva
da Silva, Eduardo Brandani
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
UTFPR
Universidade Estadual de Maringá (UEM)
dc.contributor.author.fl_str_mv de Carvalho, Edson Donizete [UNESP]
Soares, Waldir Silva
da Silva, Eduardo Brandani
dc.subject.por.fl_str_mv Color codes
Flat torus
Lattice partition
Surface codes
Toric codes
topic Color codes
Flat torus
Lattice partition
Surface codes
Toric codes
description In this work, we show that an n-dimensional sublattice Λ′ = mΛ of an n-dimensional lattice Λ induces a G = Znm tessellation in the flat torus Tβ′ = Rn/Λ′, where the group G is isomorphic to the lattice partition Λ/Λ′ . As a consequence, we obtain, via this technique, toric codes of parameters [[2m2, 2, m]], [[3m3, 3, m]] and [[6m4, 6, m2 ]] from the lattices Z2, Z3 and Z4, respectively. In particular, for n = 2, if Λ1 is either the lattice Z2 or a hexagonal lattice, through lattice partition, we obtain two equivalent ways to cover the fundamental cell P′0of each hexagonal sublattice Λ′ of hexagonal lattices Λ, using either the fundamental cell P0 or the Voronoi cell V0 . These partitions allow us to present new classes of toric codes with parameters [[3m2, 2, m]] and color codes with parameters [[18m2, 4, 4m]] in the flat torus from families of hexagonal lattices in R2 .
publishDate 2021
dc.date.none.fl_str_mv 2021-08-01
2022-04-28T19:42:32Z
2022-04-28T19:42:32Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.3390/e23080959
Entropy, v. 23, n. 8, 2021.
1099-4300
http://hdl.handle.net/11449/222115
10.3390/e23080959
2-s2.0-85111730367
url http://dx.doi.org/10.3390/e23080959
http://hdl.handle.net/11449/222115
identifier_str_mv Entropy, v. 23, n. 8, 2021.
1099-4300
10.3390/e23080959
2-s2.0-85111730367
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Entropy
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128394714415104