Topological quantum codes from lattices partition on the n-dimensional flat tori
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.3390/e23080959 http://hdl.handle.net/11449/222115 |
Resumo: | In this work, we show that an n-dimensional sublattice Λ′ = mΛ of an n-dimensional lattice Λ induces a G = Znm tessellation in the flat torus Tβ′ = Rn/Λ′, where the group G is isomorphic to the lattice partition Λ/Λ′ . As a consequence, we obtain, via this technique, toric codes of parameters [[2m2, 2, m]], [[3m3, 3, m]] and [[6m4, 6, m2 ]] from the lattices Z2, Z3 and Z4, respectively. In particular, for n = 2, if Λ1 is either the lattice Z2 or a hexagonal lattice, through lattice partition, we obtain two equivalent ways to cover the fundamental cell P′0of each hexagonal sublattice Λ′ of hexagonal lattices Λ, using either the fundamental cell P0 or the Voronoi cell V0 . These partitions allow us to present new classes of toric codes with parameters [[3m2, 2, m]] and color codes with parameters [[18m2, 4, 4m]] in the flat torus from families of hexagonal lattices in R2 . |
id |
UNSP_4e567c1e15cafcc168c98d89a385d469 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/222115 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Topological quantum codes from lattices partition on the n-dimensional flat toriColor codesFlat torusLattice partitionSurface codesToric codesIn this work, we show that an n-dimensional sublattice Λ′ = mΛ of an n-dimensional lattice Λ induces a G = Znm tessellation in the flat torus Tβ′ = Rn/Λ′, where the group G is isomorphic to the lattice partition Λ/Λ′ . As a consequence, we obtain, via this technique, toric codes of parameters [[2m2, 2, m]], [[3m3, 3, m]] and [[6m4, 6, m2 ]] from the lattices Z2, Z3 and Z4, respectively. In particular, for n = 2, if Λ1 is either the lattice Z2 or a hexagonal lattice, through lattice partition, we obtain two equivalent ways to cover the fundamental cell P′0of each hexagonal sublattice Λ′ of hexagonal lattices Λ, using either the fundamental cell P0 or the Voronoi cell V0 . These partitions allow us to present new classes of toric codes with parameters [[3m2, 2, m]] and color codes with parameters [[18m2, 4, 4m]] in the flat torus from families of hexagonal lattices in R2 .Department of Mathematics UNESPDepartment of Mathematics UTFPRDepartament of Mathematics UEMDepartment of Mathematics UNESPUniversidade Estadual Paulista (UNESP)UTFPRUniversidade Estadual de Maringá (UEM)de Carvalho, Edson Donizete [UNESP]Soares, Waldir Silvada Silva, Eduardo Brandani2022-04-28T19:42:32Z2022-04-28T19:42:32Z2021-08-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.3390/e23080959Entropy, v. 23, n. 8, 2021.1099-4300http://hdl.handle.net/11449/22211510.3390/e230809592-s2.0-85111730367Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengEntropyinfo:eu-repo/semantics/openAccess2022-04-28T19:42:32Zoai:repositorio.unesp.br:11449/222115Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:38:53.830005Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Topological quantum codes from lattices partition on the n-dimensional flat tori |
title |
Topological quantum codes from lattices partition on the n-dimensional flat tori |
spellingShingle |
Topological quantum codes from lattices partition on the n-dimensional flat tori de Carvalho, Edson Donizete [UNESP] Color codes Flat torus Lattice partition Surface codes Toric codes |
title_short |
Topological quantum codes from lattices partition on the n-dimensional flat tori |
title_full |
Topological quantum codes from lattices partition on the n-dimensional flat tori |
title_fullStr |
Topological quantum codes from lattices partition on the n-dimensional flat tori |
title_full_unstemmed |
Topological quantum codes from lattices partition on the n-dimensional flat tori |
title_sort |
Topological quantum codes from lattices partition on the n-dimensional flat tori |
author |
de Carvalho, Edson Donizete [UNESP] |
author_facet |
de Carvalho, Edson Donizete [UNESP] Soares, Waldir Silva da Silva, Eduardo Brandani |
author_role |
author |
author2 |
Soares, Waldir Silva da Silva, Eduardo Brandani |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) UTFPR Universidade Estadual de Maringá (UEM) |
dc.contributor.author.fl_str_mv |
de Carvalho, Edson Donizete [UNESP] Soares, Waldir Silva da Silva, Eduardo Brandani |
dc.subject.por.fl_str_mv |
Color codes Flat torus Lattice partition Surface codes Toric codes |
topic |
Color codes Flat torus Lattice partition Surface codes Toric codes |
description |
In this work, we show that an n-dimensional sublattice Λ′ = mΛ of an n-dimensional lattice Λ induces a G = Znm tessellation in the flat torus Tβ′ = Rn/Λ′, where the group G is isomorphic to the lattice partition Λ/Λ′ . As a consequence, we obtain, via this technique, toric codes of parameters [[2m2, 2, m]], [[3m3, 3, m]] and [[6m4, 6, m2 ]] from the lattices Z2, Z3 and Z4, respectively. In particular, for n = 2, if Λ1 is either the lattice Z2 or a hexagonal lattice, through lattice partition, we obtain two equivalent ways to cover the fundamental cell P′0of each hexagonal sublattice Λ′ of hexagonal lattices Λ, using either the fundamental cell P0 or the Voronoi cell V0 . These partitions allow us to present new classes of toric codes with parameters [[3m2, 2, m]] and color codes with parameters [[18m2, 4, 4m]] in the flat torus from families of hexagonal lattices in R2 . |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-08-01 2022-04-28T19:42:32Z 2022-04-28T19:42:32Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.3390/e23080959 Entropy, v. 23, n. 8, 2021. 1099-4300 http://hdl.handle.net/11449/222115 10.3390/e23080959 2-s2.0-85111730367 |
url |
http://dx.doi.org/10.3390/e23080959 http://hdl.handle.net/11449/222115 |
identifier_str_mv |
Entropy, v. 23, n. 8, 2021. 1099-4300 10.3390/e23080959 2-s2.0-85111730367 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Entropy |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128394714415104 |