Transistores orgânicos ultracompactos produzidos por autoenrolamento de nanomembranas

Detalhes bibliográficos
Autor(a) principal: Torikai, Kleyton
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/180599
Resumo: In the recent years, the organic electronics’ commercial viability and competitiveness became apparent, integrating a diversity of technologies, e.g., OLED flexible displays, large-area solar panels and biocompatible and wearable devices. The manufacturing of electronic devices with organic materials aims at exploiting inherent characteristics— mechanical flexibility, low processing temperatures and the potential of boosting and tailoring specific properties through chemical synthesis. However, there’s still a gap between the well-established inorganic and the organic electronics concerning applications on rugged electronics, since the organic semiconductors (OSCs) are very susceptible to harsh conditions, e.g., exposition to UV radiation and gases. In this sense, recent advances on strained nanomembrane (NM) technology has shown enormous potential in the manufacturing of hybrid ultracompact devices in a novel organic thin-film transistor (OTFT) architecture. Through traditional microfabrication techniques—photolithography, thin-film deposition—OTFTs were fabricated on top of strained NMs, which promotes a reshaping of the devices into a 3D tubular architecture when released from the substrate. This process promotes a reduction in about 90% of the footprint area while protecting the OSC in the active area in between the multiple device windings. Therefore, the OTFTs have been endowed with new proprieties without loss of electric performance, while enduring hundreds of mechanical compression cycles and showing increased resilience against UV radiation and hazardous vapors, such as ammonia. Finally, to validate this novel OTFT architecture, this strategy has been shown to be valid for different OSCs and can be used to manufacture electronic circuits through the association of multiple devices, such as the inverter reported in this study.
id UNSP_4e9ccda5589bc93dbe1d6f195effd6f6
oai_identifier_str oai:repositorio.unesp.br:11449/180599
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Transistores orgânicos ultracompactos produzidos por autoenrolamento de nanomembranasLow-voltage, flexible, and self-encapsulated ultracompact organic thin-film transistors based on nanomembranesEletrônica orgânicaNanomembrana autoenroladaTransistor orgânicoMicrofabricaçãoDispositivos eletrônicosEletrônica robustaOrganic electronicsRolled-up nanomembraneOrganic transistorMicrofabricationElectronic devicesRugged electronicsIn the recent years, the organic electronics’ commercial viability and competitiveness became apparent, integrating a diversity of technologies, e.g., OLED flexible displays, large-area solar panels and biocompatible and wearable devices. The manufacturing of electronic devices with organic materials aims at exploiting inherent characteristics— mechanical flexibility, low processing temperatures and the potential of boosting and tailoring specific properties through chemical synthesis. However, there’s still a gap between the well-established inorganic and the organic electronics concerning applications on rugged electronics, since the organic semiconductors (OSCs) are very susceptible to harsh conditions, e.g., exposition to UV radiation and gases. In this sense, recent advances on strained nanomembrane (NM) technology has shown enormous potential in the manufacturing of hybrid ultracompact devices in a novel organic thin-film transistor (OTFT) architecture. Through traditional microfabrication techniques—photolithography, thin-film deposition—OTFTs were fabricated on top of strained NMs, which promotes a reshaping of the devices into a 3D tubular architecture when released from the substrate. This process promotes a reduction in about 90% of the footprint area while protecting the OSC in the active area in between the multiple device windings. Therefore, the OTFTs have been endowed with new proprieties without loss of electric performance, while enduring hundreds of mechanical compression cycles and showing increased resilience against UV radiation and hazardous vapors, such as ammonia. Finally, to validate this novel OTFT architecture, this strategy has been shown to be valid for different OSCs and can be used to manufacture electronic circuits through the association of multiple devices, such as the inverter reported in this study.A eletrônica orgânica mostrou-se comercialmente viável e competitiva, já sendo integrada em diversas tecnologias, e.g., displays flexíveis de OLED, painéis solares de grande área, dispositivos biocompatíveis/vestíveis, entre outras. A utilização de materiais orgânicos na fabricação de dispositivos eletrônicos explora vantagens como: flexibilidade mecânica, baixas temperaturas de processamento e possibilidade de se implementar melhorias e ajustes por meio de sínteses químicas. Entretanto, a eletrônica inorgânica já bem estabelecida ainda se destaca na área da eletrônica robusta, uma vez que os semicondutores orgânicos (OSCs) são bastante suscetíveis a condições mais extremas, como exposição a gases e radiação. Nesse sentido, a tecnologia de nanomembranas autoenroladas (NM) tem mostrado, nos últimos anos, um grande potencial na fabricação de dispositivos híbridos ultracompactos em uma arquitetura inédita para transistores orgânicos de filmes finos (OTFTs). A partir das técnicas tradicionais de microfabricação—fotolitografia, deposição de filmes finos—fabricou-se OTFTs sobre NMs que, uma vez liberadas do substrato através da remoção sistemática de uma camada de sacrifício, remodelam os dispositivos em uma arquitetura tubular tridimensional, reduzindo a área ocupada em aproximadamente 90% e protegendo os OSCs da área ativa do OTFT entre as múltiplas voltas das NMs. Assim, mostrou-se que a arquitetura confere novas propriedades aos OTFTs sem prejudicar as propriedades elétricas, suportando centenas de ciclos de compressão mecânica e mostrando-se resistentes a radiação ultravioleta e a vapores agressivos, como a amônia. Por fim, para validar a arquitetura de OTFT inédita, mostra-se que a estratégia utilizada é válida para diferentes OSCs e pode ser utilizada na fabricação de circuitos eletrônicos mais complexos a partir da associação de múltiplos dispositivos, como o inversor aqui apresentado.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)CAPES: Código de financeamento 001FAPESP: Jovem Pesquisador 2014/25979-2Universidade Estadual Paulista (Unesp)Bufon, Carlos César Bof [UNESP]Universidade Estadual Paulista (Unesp)Torikai, Kleyton2019-01-30T12:02:31Z2019-01-30T12:02:31Z2018-12-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/11449/18059900091213433004056083P7porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2023-10-17T06:03:27Zoai:repositorio.unesp.br:11449/180599Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462023-10-17T06:03:27Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Transistores orgânicos ultracompactos produzidos por autoenrolamento de nanomembranas
Low-voltage, flexible, and self-encapsulated ultracompact organic thin-film transistors based on nanomembranes
title Transistores orgânicos ultracompactos produzidos por autoenrolamento de nanomembranas
spellingShingle Transistores orgânicos ultracompactos produzidos por autoenrolamento de nanomembranas
Torikai, Kleyton
Eletrônica orgânica
Nanomembrana autoenrolada
Transistor orgânico
Microfabricação
Dispositivos eletrônicos
Eletrônica robusta
Organic electronics
Rolled-up nanomembrane
Organic transistor
Microfabrication
Electronic devices
Rugged electronics
title_short Transistores orgânicos ultracompactos produzidos por autoenrolamento de nanomembranas
title_full Transistores orgânicos ultracompactos produzidos por autoenrolamento de nanomembranas
title_fullStr Transistores orgânicos ultracompactos produzidos por autoenrolamento de nanomembranas
title_full_unstemmed Transistores orgânicos ultracompactos produzidos por autoenrolamento de nanomembranas
title_sort Transistores orgânicos ultracompactos produzidos por autoenrolamento de nanomembranas
author Torikai, Kleyton
author_facet Torikai, Kleyton
author_role author
dc.contributor.none.fl_str_mv Bufon, Carlos César Bof [UNESP]
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Torikai, Kleyton
dc.subject.por.fl_str_mv Eletrônica orgânica
Nanomembrana autoenrolada
Transistor orgânico
Microfabricação
Dispositivos eletrônicos
Eletrônica robusta
Organic electronics
Rolled-up nanomembrane
Organic transistor
Microfabrication
Electronic devices
Rugged electronics
topic Eletrônica orgânica
Nanomembrana autoenrolada
Transistor orgânico
Microfabricação
Dispositivos eletrônicos
Eletrônica robusta
Organic electronics
Rolled-up nanomembrane
Organic transistor
Microfabrication
Electronic devices
Rugged electronics
description In the recent years, the organic electronics’ commercial viability and competitiveness became apparent, integrating a diversity of technologies, e.g., OLED flexible displays, large-area solar panels and biocompatible and wearable devices. The manufacturing of electronic devices with organic materials aims at exploiting inherent characteristics— mechanical flexibility, low processing temperatures and the potential of boosting and tailoring specific properties through chemical synthesis. However, there’s still a gap between the well-established inorganic and the organic electronics concerning applications on rugged electronics, since the organic semiconductors (OSCs) are very susceptible to harsh conditions, e.g., exposition to UV radiation and gases. In this sense, recent advances on strained nanomembrane (NM) technology has shown enormous potential in the manufacturing of hybrid ultracompact devices in a novel organic thin-film transistor (OTFT) architecture. Through traditional microfabrication techniques—photolithography, thin-film deposition—OTFTs were fabricated on top of strained NMs, which promotes a reshaping of the devices into a 3D tubular architecture when released from the substrate. This process promotes a reduction in about 90% of the footprint area while protecting the OSC in the active area in between the multiple device windings. Therefore, the OTFTs have been endowed with new proprieties without loss of electric performance, while enduring hundreds of mechanical compression cycles and showing increased resilience against UV radiation and hazardous vapors, such as ammonia. Finally, to validate this novel OTFT architecture, this strategy has been shown to be valid for different OSCs and can be used to manufacture electronic circuits through the association of multiple devices, such as the inverter reported in this study.
publishDate 2018
dc.date.none.fl_str_mv 2018-12-04
2019-01-30T12:02:31Z
2019-01-30T12:02:31Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11449/180599
000912134
33004056083P7
url http://hdl.handle.net/11449/180599
identifier_str_mv 000912134
33004056083P7
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1799964591026864128