Layered α-MoO3nanoplates for gas sensing applications
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1039/d0ce00599a http://hdl.handle.net/11449/199131 |
Resumo: | The synthesis of α-MoO3 nanoplates with a unique well-faceted rectangular morphology produced by a polymeric solution route is presented. This versatile chemical route allowed the growth of layered nanoplates on different crystalline substrates to manufacture electronic/optoelectronic nanodevices. The α-MoO3 crystalline phase was identified by both X-ray diffraction (XRD) and Raman spectroscopy. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that the well-faceted rectangular layered nanoplates can be obtained depending on the fine control of the synthesis parameters due to the MoO3 sublimation. Gas sensing measurements revealed that the α-MoO3 nanoplates exhibit an enhanced response to NO2, with sensor signals up to 50, combined with a low optimum operating temperature. In addition, the devices exhibited the highest selectivity to NO2 relative to H2, CO, and CH4, which can be a consequence of the specific exposed surface plane. These results reveal that layered α-MoO3 nanoplates are promising for use in the manufacturing of high-performance NO2 gas sensor nanodevices. |
id |
UNSP_4f4efa8c5d6a8bab9f5e2bd1927a0d9a |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/199131 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Layered α-MoO3nanoplates for gas sensing applicationsThe synthesis of α-MoO3 nanoplates with a unique well-faceted rectangular morphology produced by a polymeric solution route is presented. This versatile chemical route allowed the growth of layered nanoplates on different crystalline substrates to manufacture electronic/optoelectronic nanodevices. The α-MoO3 crystalline phase was identified by both X-ray diffraction (XRD) and Raman spectroscopy. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that the well-faceted rectangular layered nanoplates can be obtained depending on the fine control of the synthesis parameters due to the MoO3 sublimation. Gas sensing measurements revealed that the α-MoO3 nanoplates exhibit an enhanced response to NO2, with sensor signals up to 50, combined with a low optimum operating temperature. In addition, the devices exhibited the highest selectivity to NO2 relative to H2, CO, and CH4, which can be a consequence of the specific exposed surface plane. These results reveal that layered α-MoO3 nanoplates are promising for use in the manufacturing of high-performance NO2 gas sensor nanodevices.Department of Engineering Physics and Mathematics Chemistry Institute São Paulo State University (UNESP)Department of Engineering Physics and Mathematics Chemistry Institute São Paulo State University (UNESP)Universidade Estadual Paulista (Unesp)Felix, A. A. [UNESP]Silva, R. A. [UNESP]Orlandi, M. O. [UNESP]2020-12-12T01:31:34Z2020-12-12T01:31:34Z2020-07-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article4640-4649http://dx.doi.org/10.1039/d0ce00599aCrystEngComm, v. 22, n. 27, p. 4640-4649, 2020.1466-8033http://hdl.handle.net/11449/19913110.1039/d0ce00599a2-s2.0-85088261776Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengCrystEngComminfo:eu-repo/semantics/openAccess2021-10-23T03:21:37Zoai:repositorio.unesp.br:11449/199131Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:17:28.838139Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Layered α-MoO3nanoplates for gas sensing applications |
title |
Layered α-MoO3nanoplates for gas sensing applications |
spellingShingle |
Layered α-MoO3nanoplates for gas sensing applications Felix, A. A. [UNESP] |
title_short |
Layered α-MoO3nanoplates for gas sensing applications |
title_full |
Layered α-MoO3nanoplates for gas sensing applications |
title_fullStr |
Layered α-MoO3nanoplates for gas sensing applications |
title_full_unstemmed |
Layered α-MoO3nanoplates for gas sensing applications |
title_sort |
Layered α-MoO3nanoplates for gas sensing applications |
author |
Felix, A. A. [UNESP] |
author_facet |
Felix, A. A. [UNESP] Silva, R. A. [UNESP] Orlandi, M. O. [UNESP] |
author_role |
author |
author2 |
Silva, R. A. [UNESP] Orlandi, M. O. [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Felix, A. A. [UNESP] Silva, R. A. [UNESP] Orlandi, M. O. [UNESP] |
description |
The synthesis of α-MoO3 nanoplates with a unique well-faceted rectangular morphology produced by a polymeric solution route is presented. This versatile chemical route allowed the growth of layered nanoplates on different crystalline substrates to manufacture electronic/optoelectronic nanodevices. The α-MoO3 crystalline phase was identified by both X-ray diffraction (XRD) and Raman spectroscopy. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that the well-faceted rectangular layered nanoplates can be obtained depending on the fine control of the synthesis parameters due to the MoO3 sublimation. Gas sensing measurements revealed that the α-MoO3 nanoplates exhibit an enhanced response to NO2, with sensor signals up to 50, combined with a low optimum operating temperature. In addition, the devices exhibited the highest selectivity to NO2 relative to H2, CO, and CH4, which can be a consequence of the specific exposed surface plane. These results reveal that layered α-MoO3 nanoplates are promising for use in the manufacturing of high-performance NO2 gas sensor nanodevices. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-12T01:31:34Z 2020-12-12T01:31:34Z 2020-07-21 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1039/d0ce00599a CrystEngComm, v. 22, n. 27, p. 4640-4649, 2020. 1466-8033 http://hdl.handle.net/11449/199131 10.1039/d0ce00599a 2-s2.0-85088261776 |
url |
http://dx.doi.org/10.1039/d0ce00599a http://hdl.handle.net/11449/199131 |
identifier_str_mv |
CrystEngComm, v. 22, n. 27, p. 4640-4649, 2020. 1466-8033 10.1039/d0ce00599a 2-s2.0-85088261776 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
CrystEngComm |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
4640-4649 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129504544030720 |