Layered α-MoO3nanoplates for gas sensing applications

Detalhes bibliográficos
Autor(a) principal: Felix, A. A. [UNESP]
Data de Publicação: 2020
Outros Autores: Silva, R. A. [UNESP], Orlandi, M. O. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1039/d0ce00599a
http://hdl.handle.net/11449/199131
Resumo: The synthesis of α-MoO3 nanoplates with a unique well-faceted rectangular morphology produced by a polymeric solution route is presented. This versatile chemical route allowed the growth of layered nanoplates on different crystalline substrates to manufacture electronic/optoelectronic nanodevices. The α-MoO3 crystalline phase was identified by both X-ray diffraction (XRD) and Raman spectroscopy. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that the well-faceted rectangular layered nanoplates can be obtained depending on the fine control of the synthesis parameters due to the MoO3 sublimation. Gas sensing measurements revealed that the α-MoO3 nanoplates exhibit an enhanced response to NO2, with sensor signals up to 50, combined with a low optimum operating temperature. In addition, the devices exhibited the highest selectivity to NO2 relative to H2, CO, and CH4, which can be a consequence of the specific exposed surface plane. These results reveal that layered α-MoO3 nanoplates are promising for use in the manufacturing of high-performance NO2 gas sensor nanodevices.
id UNSP_4f4efa8c5d6a8bab9f5e2bd1927a0d9a
oai_identifier_str oai:repositorio.unesp.br:11449/199131
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Layered α-MoO3nanoplates for gas sensing applicationsThe synthesis of α-MoO3 nanoplates with a unique well-faceted rectangular morphology produced by a polymeric solution route is presented. This versatile chemical route allowed the growth of layered nanoplates on different crystalline substrates to manufacture electronic/optoelectronic nanodevices. The α-MoO3 crystalline phase was identified by both X-ray diffraction (XRD) and Raman spectroscopy. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that the well-faceted rectangular layered nanoplates can be obtained depending on the fine control of the synthesis parameters due to the MoO3 sublimation. Gas sensing measurements revealed that the α-MoO3 nanoplates exhibit an enhanced response to NO2, with sensor signals up to 50, combined with a low optimum operating temperature. In addition, the devices exhibited the highest selectivity to NO2 relative to H2, CO, and CH4, which can be a consequence of the specific exposed surface plane. These results reveal that layered α-MoO3 nanoplates are promising for use in the manufacturing of high-performance NO2 gas sensor nanodevices.Department of Engineering Physics and Mathematics Chemistry Institute São Paulo State University (UNESP)Department of Engineering Physics and Mathematics Chemistry Institute São Paulo State University (UNESP)Universidade Estadual Paulista (Unesp)Felix, A. A. [UNESP]Silva, R. A. [UNESP]Orlandi, M. O. [UNESP]2020-12-12T01:31:34Z2020-12-12T01:31:34Z2020-07-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article4640-4649http://dx.doi.org/10.1039/d0ce00599aCrystEngComm, v. 22, n. 27, p. 4640-4649, 2020.1466-8033http://hdl.handle.net/11449/19913110.1039/d0ce00599a2-s2.0-85088261776Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengCrystEngComminfo:eu-repo/semantics/openAccess2021-10-23T03:21:37Zoai:repositorio.unesp.br:11449/199131Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:17:28.838139Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Layered α-MoO3nanoplates for gas sensing applications
title Layered α-MoO3nanoplates for gas sensing applications
spellingShingle Layered α-MoO3nanoplates for gas sensing applications
Felix, A. A. [UNESP]
title_short Layered α-MoO3nanoplates for gas sensing applications
title_full Layered α-MoO3nanoplates for gas sensing applications
title_fullStr Layered α-MoO3nanoplates for gas sensing applications
title_full_unstemmed Layered α-MoO3nanoplates for gas sensing applications
title_sort Layered α-MoO3nanoplates for gas sensing applications
author Felix, A. A. [UNESP]
author_facet Felix, A. A. [UNESP]
Silva, R. A. [UNESP]
Orlandi, M. O. [UNESP]
author_role author
author2 Silva, R. A. [UNESP]
Orlandi, M. O. [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Felix, A. A. [UNESP]
Silva, R. A. [UNESP]
Orlandi, M. O. [UNESP]
description The synthesis of α-MoO3 nanoplates with a unique well-faceted rectangular morphology produced by a polymeric solution route is presented. This versatile chemical route allowed the growth of layered nanoplates on different crystalline substrates to manufacture electronic/optoelectronic nanodevices. The α-MoO3 crystalline phase was identified by both X-ray diffraction (XRD) and Raman spectroscopy. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that the well-faceted rectangular layered nanoplates can be obtained depending on the fine control of the synthesis parameters due to the MoO3 sublimation. Gas sensing measurements revealed that the α-MoO3 nanoplates exhibit an enhanced response to NO2, with sensor signals up to 50, combined with a low optimum operating temperature. In addition, the devices exhibited the highest selectivity to NO2 relative to H2, CO, and CH4, which can be a consequence of the specific exposed surface plane. These results reveal that layered α-MoO3 nanoplates are promising for use in the manufacturing of high-performance NO2 gas sensor nanodevices.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-12T01:31:34Z
2020-12-12T01:31:34Z
2020-07-21
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1039/d0ce00599a
CrystEngComm, v. 22, n. 27, p. 4640-4649, 2020.
1466-8033
http://hdl.handle.net/11449/199131
10.1039/d0ce00599a
2-s2.0-85088261776
url http://dx.doi.org/10.1039/d0ce00599a
http://hdl.handle.net/11449/199131
identifier_str_mv CrystEngComm, v. 22, n. 27, p. 4640-4649, 2020.
1466-8033
10.1039/d0ce00599a
2-s2.0-85088261776
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv CrystEngComm
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 4640-4649
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129504544030720