Mining of variables from embryo morphokinetics, blastocyst’s morphology and patient parameters: An approach to predict the live birth in the assisted reproduction service
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.5935/1518-0557.20200014 http://hdl.handle.net/11449/206625 |
Resumo: | Based on growing demand for assisted reproduction technology, improved predictive models are required to optimize in vitro fertilization/intracytoplasmatic sperm injection strategies, prioritizing single embryo transfer. There are still several obstacles to overcome for the purpose of improving assisted reproductive success, such as intra-and inter-observer subjectivity in embryonic selection, high occurrence of multiple pregnancies, maternal and neonatal complications. Here, we compare studies that used several variables that impact the success of assisted reproduction, such as blastocyst morphology and morphokinetic aspects of embryo development as well as characteristics of the patients submitted to assisted reproduction, in order to predict embryo quality, implantation or live birth. Thereby, we emphasize the proposal of an artificial intelligence-based platform for a more objective method to predict live birth. |
id |
UNSP_4f7269f4b6d67b4fbf33965a02387c4d |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/206625 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Mining of variables from embryo morphokinetics, blastocyst’s morphology and patient parameters: An approach to predict the live birth in the assisted reproduction serviceArtificial intelligenceAssisted reproductive technologyLive birth predictionBased on growing demand for assisted reproduction technology, improved predictive models are required to optimize in vitro fertilization/intracytoplasmatic sperm injection strategies, prioritizing single embryo transfer. There are still several obstacles to overcome for the purpose of improving assisted reproductive success, such as intra-and inter-observer subjectivity in embryonic selection, high occurrence of multiple pregnancies, maternal and neonatal complications. Here, we compare studies that used several variables that impact the success of assisted reproduction, such as blastocyst morphology and morphokinetic aspects of embryo development as well as characteristics of the patients submitted to assisted reproduction, in order to predict embryo quality, implantation or live birth. Thereby, we emphasize the proposal of an artificial intelligence-based platform for a more objective method to predict live birth.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Universidade Estadual PaulistaLaboratório de Matemática Aplicada Department of Biological Sciences School of Languages and Sciences São Paulo State University (UNESP), Campus AssisLaboratório de Micromanipulação Embrionária Department of Biological Sciences School of Sciences and Languages São Paulo State University (UNESP), Campus AssisLaboratório de Matemática Aplicada Department of Biological Sciences School of Languages and Sciences São Paulo State University (UNESP), Campus AssisLaboratório de Micromanipulação Embrionária Department of Biological Sciences School of Sciences and Languages São Paulo State University (UNESP), Campus AssisFAPESP: #2012/50533-2FAPESP: #2017/19323-5FAPESP: #2018/190530Universidade Estadual Paulista: #47956Universidade Estadual Paulista (Unesp)Chéles, Dóris Spinosa [UNESP]Dal Molin, Eloiza Adriane [UNESP]Rocha, José Celso [UNESP]Nogueira, Marcelo Fábio Gouveia [UNESP]2021-06-25T10:35:21Z2021-06-25T10:35:21Z2020-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article470-479http://dx.doi.org/10.5935/1518-0557.20200014Jornal Brasileiro de Reproducao Assistida, v. 24, n. 4, p. 470-479, 2020.1518-05571517-5693http://hdl.handle.net/11449/20662510.5935/1518-0557.202000142-s2.0-85092234801Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJornal Brasileiro de Reproducao Assistidainfo:eu-repo/semantics/openAccess2024-06-13T17:38:41Zoai:repositorio.unesp.br:11449/206625Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:09:37.078089Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Mining of variables from embryo morphokinetics, blastocyst’s morphology and patient parameters: An approach to predict the live birth in the assisted reproduction service |
title |
Mining of variables from embryo morphokinetics, blastocyst’s morphology and patient parameters: An approach to predict the live birth in the assisted reproduction service |
spellingShingle |
Mining of variables from embryo morphokinetics, blastocyst’s morphology and patient parameters: An approach to predict the live birth in the assisted reproduction service Chéles, Dóris Spinosa [UNESP] Artificial intelligence Assisted reproductive technology Live birth prediction |
title_short |
Mining of variables from embryo morphokinetics, blastocyst’s morphology and patient parameters: An approach to predict the live birth in the assisted reproduction service |
title_full |
Mining of variables from embryo morphokinetics, blastocyst’s morphology and patient parameters: An approach to predict the live birth in the assisted reproduction service |
title_fullStr |
Mining of variables from embryo morphokinetics, blastocyst’s morphology and patient parameters: An approach to predict the live birth in the assisted reproduction service |
title_full_unstemmed |
Mining of variables from embryo morphokinetics, blastocyst’s morphology and patient parameters: An approach to predict the live birth in the assisted reproduction service |
title_sort |
Mining of variables from embryo morphokinetics, blastocyst’s morphology and patient parameters: An approach to predict the live birth in the assisted reproduction service |
author |
Chéles, Dóris Spinosa [UNESP] |
author_facet |
Chéles, Dóris Spinosa [UNESP] Dal Molin, Eloiza Adriane [UNESP] Rocha, José Celso [UNESP] Nogueira, Marcelo Fábio Gouveia [UNESP] |
author_role |
author |
author2 |
Dal Molin, Eloiza Adriane [UNESP] Rocha, José Celso [UNESP] Nogueira, Marcelo Fábio Gouveia [UNESP] |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Chéles, Dóris Spinosa [UNESP] Dal Molin, Eloiza Adriane [UNESP] Rocha, José Celso [UNESP] Nogueira, Marcelo Fábio Gouveia [UNESP] |
dc.subject.por.fl_str_mv |
Artificial intelligence Assisted reproductive technology Live birth prediction |
topic |
Artificial intelligence Assisted reproductive technology Live birth prediction |
description |
Based on growing demand for assisted reproduction technology, improved predictive models are required to optimize in vitro fertilization/intracytoplasmatic sperm injection strategies, prioritizing single embryo transfer. There are still several obstacles to overcome for the purpose of improving assisted reproductive success, such as intra-and inter-observer subjectivity in embryonic selection, high occurrence of multiple pregnancies, maternal and neonatal complications. Here, we compare studies that used several variables that impact the success of assisted reproduction, such as blastocyst morphology and morphokinetic aspects of embryo development as well as characteristics of the patients submitted to assisted reproduction, in order to predict embryo quality, implantation or live birth. Thereby, we emphasize the proposal of an artificial intelligence-based platform for a more objective method to predict live birth. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01-01 2021-06-25T10:35:21Z 2021-06-25T10:35:21Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.5935/1518-0557.20200014 Jornal Brasileiro de Reproducao Assistida, v. 24, n. 4, p. 470-479, 2020. 1518-0557 1517-5693 http://hdl.handle.net/11449/206625 10.5935/1518-0557.20200014 2-s2.0-85092234801 |
url |
http://dx.doi.org/10.5935/1518-0557.20200014 http://hdl.handle.net/11449/206625 |
identifier_str_mv |
Jornal Brasileiro de Reproducao Assistida, v. 24, n. 4, p. 470-479, 2020. 1518-0557 1517-5693 10.5935/1518-0557.20200014 2-s2.0-85092234801 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Jornal Brasileiro de Reproducao Assistida |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
470-479 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129166516682752 |