Avaliação de escoliose utilizando baropodômetro e rede neural artificial

Detalhes bibliográficos
Autor(a) principal: Fanfoni, Caroline Meireles [UNESP]
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/150994
Resumo: A patologia mais recorrente na coluna vertebral é a escoliose. A modificação estrutural causada pela escoliose gera o desalinhamento postural global do indivíduo. Uma das modificações causadas pelo desalinhamento postural é a forma como o indivíduo distribui o peso na região plantar dos pés. O objetivo deste trabalho foi implementar um sistema eletrônico constituído por um baropodômetro e redes neurais artificiais para separar pacientes com Grau I na classificação de Ricard, de 1o a 19o de escoliose, em dois grupos, C1 (1o a 9o) e C2 (10o a 19o). A maior percentagem de pacientes com escoliose está nesta faixa, aqueles que não precisam usar coletes ou fazer cirurgia, e cujo tratamento é realizado com ginásticas especiais e com avaliações freqüentes pelo profissional de saúde. A classificação dos pacientes nos grupos de escoliose foi implementada com o software Matlab e redes neurais artificiais, usando o algoritmo de treinamento backpropagation. A precisão média da classificação foi de 93,7% para o grupo C1 e 94,5% para o grupo C2. As acurácias na classificação foram de 83,3% para o grupo C1 e 96% para o grupo C2. O sistema implantado pode contribuir para o tratamento de pacientes com grau de escoliose na faixa de 1o a 19o, o intervalo de maior incidência desta patologia, no qual o monitoramento da condição clínica com técnicas não invasivas é de fundamental importância.
id UNSP_4ff6596df8e1ea6635f0b52d0b3a043c
oai_identifier_str oai:repositorio.unesp.br:11449/150994
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Avaliação de escoliose utilizando baropodômetro e rede neural artificialEvaluation of scoliosis using baropodometer and artificial neural networkEscolioseBaropodômetroRedes neurais artificiaisRetropropagaçãoA patologia mais recorrente na coluna vertebral é a escoliose. A modificação estrutural causada pela escoliose gera o desalinhamento postural global do indivíduo. Uma das modificações causadas pelo desalinhamento postural é a forma como o indivíduo distribui o peso na região plantar dos pés. O objetivo deste trabalho foi implementar um sistema eletrônico constituído por um baropodômetro e redes neurais artificiais para separar pacientes com Grau I na classificação de Ricard, de 1o a 19o de escoliose, em dois grupos, C1 (1o a 9o) e C2 (10o a 19o). A maior percentagem de pacientes com escoliose está nesta faixa, aqueles que não precisam usar coletes ou fazer cirurgia, e cujo tratamento é realizado com ginásticas especiais e com avaliações freqüentes pelo profissional de saúde. A classificação dos pacientes nos grupos de escoliose foi implementada com o software Matlab e redes neurais artificiais, usando o algoritmo de treinamento backpropagation. A precisão média da classificação foi de 93,7% para o grupo C1 e 94,5% para o grupo C2. As acurácias na classificação foram de 83,3% para o grupo C1 e 96% para o grupo C2. O sistema implantado pode contribuir para o tratamento de pacientes com grau de escoliose na faixa de 1o a 19o, o intervalo de maior incidência desta patologia, no qual o monitoramento da condição clínica com técnicas não invasivas é de fundamental importância.The most recurrent pathology in the spine is scoliosis. The structural modification caused by scoliosis generates the individual's overall postural misalignment. One of the modifications caused by postural misalignment is the way the individual distributes the weight in the plantar region of the feet. The objective of this work was to implement an electronic system consisting of a baropodometer and artificial neural networks to separate patients with Grade I in the classification of Ricard, from 1o to 19o of scoliosis, in two groups, C1 (1o to 9o) and C2 (10o to 9o). The largest percentage of patients with scoliosis are in this range, those who do not need to wear vests or have surgery, and whose treatment is performed with special gymnastics and with frequent evaluations by the health professional. The classification of patients in the scoliosis groups was implemented with Matlab software and artificial neural networks, using the backpropagation training algorithm. The mean precision of the classification was 93.7% for the C1 group and 94.5% for the C2 group. The accuracy in the classification was 83.3% for the group C1 and 96.0% for the group C2. The implemented system can contribute to the treatment of patients with grade of scoliosis in the range from 1o to 19o, the interval of higher incidence of this pathology, in which the monitoring of the clinical condition by non-invasive techniques is of fundamental importance.Universidade Estadual Paulista (Unesp)Carvalho, Aparecido Augusto de [UNESP]Universidade Estadual Paulista (Unesp)Fanfoni, Caroline Meireles [UNESP]2017-06-28T19:46:06Z2017-06-28T19:46:06Z2017-01-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/11449/15099400088823633004056087P2porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-06-28T19:13:37Zoai:repositorio.unesp.br:11449/150994Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:58:36.961274Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Avaliação de escoliose utilizando baropodômetro e rede neural artificial
Evaluation of scoliosis using baropodometer and artificial neural network
title Avaliação de escoliose utilizando baropodômetro e rede neural artificial
spellingShingle Avaliação de escoliose utilizando baropodômetro e rede neural artificial
Fanfoni, Caroline Meireles [UNESP]
Escoliose
Baropodômetro
Redes neurais artificiais
Retropropagação
title_short Avaliação de escoliose utilizando baropodômetro e rede neural artificial
title_full Avaliação de escoliose utilizando baropodômetro e rede neural artificial
title_fullStr Avaliação de escoliose utilizando baropodômetro e rede neural artificial
title_full_unstemmed Avaliação de escoliose utilizando baropodômetro e rede neural artificial
title_sort Avaliação de escoliose utilizando baropodômetro e rede neural artificial
author Fanfoni, Caroline Meireles [UNESP]
author_facet Fanfoni, Caroline Meireles [UNESP]
author_role author
dc.contributor.none.fl_str_mv Carvalho, Aparecido Augusto de [UNESP]
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Fanfoni, Caroline Meireles [UNESP]
dc.subject.por.fl_str_mv Escoliose
Baropodômetro
Redes neurais artificiais
Retropropagação
topic Escoliose
Baropodômetro
Redes neurais artificiais
Retropropagação
description A patologia mais recorrente na coluna vertebral é a escoliose. A modificação estrutural causada pela escoliose gera o desalinhamento postural global do indivíduo. Uma das modificações causadas pelo desalinhamento postural é a forma como o indivíduo distribui o peso na região plantar dos pés. O objetivo deste trabalho foi implementar um sistema eletrônico constituído por um baropodômetro e redes neurais artificiais para separar pacientes com Grau I na classificação de Ricard, de 1o a 19o de escoliose, em dois grupos, C1 (1o a 9o) e C2 (10o a 19o). A maior percentagem de pacientes com escoliose está nesta faixa, aqueles que não precisam usar coletes ou fazer cirurgia, e cujo tratamento é realizado com ginásticas especiais e com avaliações freqüentes pelo profissional de saúde. A classificação dos pacientes nos grupos de escoliose foi implementada com o software Matlab e redes neurais artificiais, usando o algoritmo de treinamento backpropagation. A precisão média da classificação foi de 93,7% para o grupo C1 e 94,5% para o grupo C2. As acurácias na classificação foram de 83,3% para o grupo C1 e 96% para o grupo C2. O sistema implantado pode contribuir para o tratamento de pacientes com grau de escoliose na faixa de 1o a 19o, o intervalo de maior incidência desta patologia, no qual o monitoramento da condição clínica com técnicas não invasivas é de fundamental importância.
publishDate 2017
dc.date.none.fl_str_mv 2017-06-28T19:46:06Z
2017-06-28T19:46:06Z
2017-01-16
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11449/150994
000888236
33004056087P2
url http://hdl.handle.net/11449/150994
identifier_str_mv 000888236
33004056087P2
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129568658161664