DENTAL BIOMETRICS: HUMAN IDENTIFICATION BASED ON DENTAL WORK INFORMATION
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/195956 |
Resumo: | Dental biometrics is used in forensic dentistry to identify or verify persons based on their dental radiographs. This paper presents a method for human identification based on dental work information. The proposed method works with three main processing steps: segmentation (feature extraction), creation of a dental code, and matching. In the segmentation step, seed points of the dental works are detected by thresholding. The final segmentation is obtained with a snake (active contour) algorithm. The dental code is defined from the position (upper or lower), the size of the dental works, and distance between neighboring dental works. The matching stage is performed with the Edit distance (Levenshtein distance). The costs for the insertion, deletion and substitution operations were adapted to make the matching algorithm more sensitive. The method was tested on a database including 68 dental radiographs and the results are encouraging. |
id |
UNSP_505509354fcdb050e29472421b9094d1 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/195956 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
DENTAL BIOMETRICS: HUMAN IDENTIFICATION BASED ON DENTAL WORK INFORMATIONDental biometrics is used in forensic dentistry to identify or verify persons based on their dental radiographs. This paper presents a method for human identification based on dental work information. The proposed method works with three main processing steps: segmentation (feature extraction), creation of a dental code, and matching. In the segmentation step, seed points of the dental works are detected by thresholding. The final segmentation is obtained with a snake (active contour) algorithm. The dental code is defined from the position (upper or lower), the size of the dental works, and distance between neighboring dental works. The matching stage is performed with the Edit distance (Levenshtein distance). The costs for the insertion, deletion and substitution operations were adapted to make the matching algorithm more sensitive. The method was tested on a database including 68 dental radiographs and the results are encouraging.Carinthia Univ Appl Sci, Klagenfurt, AustriaUNESP, Dept Comp, Fac Ciencias, Bauru, SP, BrazilUNESP, Dept Comp, Fac Ciencias, Bauru, SP, BrazilOsterreichische Computer Gesellschaft-ocgCarinthia Univ Appl SciUniversidade Estadual Paulista (Unesp)Hofer, M.Marana, A. N. [UNESP]Schreier, G.Hayn, D.Ammenwerth, E.2020-12-10T18:31:03Z2020-12-10T18:31:03Z2008-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject165-173Ehealth2008 - Medical Informatics Meets Ehealth. Wien: Osterreichische Computer Gesellschaft-ocg, p. 165-173, 2008.http://hdl.handle.net/11449/195956WOS:000282817600026Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengEhealth2008 - Medical Informatics Meets Ehealthinfo:eu-repo/semantics/openAccess2024-04-23T16:11:27Zoai:repositorio.unesp.br:11449/195956Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:03:02.957632Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
DENTAL BIOMETRICS: HUMAN IDENTIFICATION BASED ON DENTAL WORK INFORMATION |
title |
DENTAL BIOMETRICS: HUMAN IDENTIFICATION BASED ON DENTAL WORK INFORMATION |
spellingShingle |
DENTAL BIOMETRICS: HUMAN IDENTIFICATION BASED ON DENTAL WORK INFORMATION Hofer, M. |
title_short |
DENTAL BIOMETRICS: HUMAN IDENTIFICATION BASED ON DENTAL WORK INFORMATION |
title_full |
DENTAL BIOMETRICS: HUMAN IDENTIFICATION BASED ON DENTAL WORK INFORMATION |
title_fullStr |
DENTAL BIOMETRICS: HUMAN IDENTIFICATION BASED ON DENTAL WORK INFORMATION |
title_full_unstemmed |
DENTAL BIOMETRICS: HUMAN IDENTIFICATION BASED ON DENTAL WORK INFORMATION |
title_sort |
DENTAL BIOMETRICS: HUMAN IDENTIFICATION BASED ON DENTAL WORK INFORMATION |
author |
Hofer, M. |
author_facet |
Hofer, M. Marana, A. N. [UNESP] Schreier, G. Hayn, D. Ammenwerth, E. |
author_role |
author |
author2 |
Marana, A. N. [UNESP] Schreier, G. Hayn, D. Ammenwerth, E. |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Carinthia Univ Appl Sci Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Hofer, M. Marana, A. N. [UNESP] Schreier, G. Hayn, D. Ammenwerth, E. |
description |
Dental biometrics is used in forensic dentistry to identify or verify persons based on their dental radiographs. This paper presents a method for human identification based on dental work information. The proposed method works with three main processing steps: segmentation (feature extraction), creation of a dental code, and matching. In the segmentation step, seed points of the dental works are detected by thresholding. The final segmentation is obtained with a snake (active contour) algorithm. The dental code is defined from the position (upper or lower), the size of the dental works, and distance between neighboring dental works. The matching stage is performed with the Edit distance (Levenshtein distance). The costs for the insertion, deletion and substitution operations were adapted to make the matching algorithm more sensitive. The method was tested on a database including 68 dental radiographs and the results are encouraging. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-01-01 2020-12-10T18:31:03Z 2020-12-10T18:31:03Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Ehealth2008 - Medical Informatics Meets Ehealth. Wien: Osterreichische Computer Gesellschaft-ocg, p. 165-173, 2008. http://hdl.handle.net/11449/195956 WOS:000282817600026 |
identifier_str_mv |
Ehealth2008 - Medical Informatics Meets Ehealth. Wien: Osterreichische Computer Gesellschaft-ocg, p. 165-173, 2008. WOS:000282817600026 |
url |
http://hdl.handle.net/11449/195956 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Ehealth2008 - Medical Informatics Meets Ehealth |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
165-173 |
dc.publisher.none.fl_str_mv |
Osterreichische Computer Gesellschaft-ocg |
publisher.none.fl_str_mv |
Osterreichische Computer Gesellschaft-ocg |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128232463007744 |