Comparative genomic analysis of Genlisea (corkscrew plants—Lentibulariaceae) chloroplast genomes reveals an increasing loss of the ndh genes
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1371/journal.pone.0190321 http://hdl.handle.net/11449/175711 |
Resumo: | In the carnivorous plant family Lentibulariaceae, all three genome compartments (nuclear, chloroplast, and mitochondria) have some of the highest rates of nucleotide substitutions across angiosperms. While the genera Genlisea and Utricularia have the smallest known flowering plant nuclear genomes, the chloroplast genomes (cpDNA) are mostly structurally conserved except for deletion and/or pseudogenization of the NAD(P)H-dehydrogenase complex (ndh) genes known to be involved in stress conditions of low light or CO2 concentrations. In order to determine how the cpDNA are changing, and to better understand the evolutionary history within the Genlisea genus, we sequenced, assembled and analyzed complete cpDNA from six species (G. aurea, G. filiformis, G. pygmaea, G. repens, G. tuberosa and G. violacea) together with the publicly available G. margaretae cpDNA. In general, the cpDNA structure among the analyzed Genlisea species is highly similar. However, we found that the plastidial ndh genes underwent a progressive process of degradation similar to the other terrestrial Lentibulariaceae cpDNA analyzed to date, but in contrast to the aquatic species. Contrary to current thinking that the terrestrial environment is a more stressful environment and thus requiring the ndh genes, we provide evidence that in the Lentibulariaceae the terrestrial forms have progressive loss while the aquatic forms have the eleven plastidial ndh genes intact. Therefore, the Lentibulariaceae system provides an important opportunity to understand the evolutionary forces that govern the transition to an aquatic environment and may provide insight into how plants manage water stress at a genome scale. |
id |
UNSP_52c78bdcd0a5d834bd103fd264cd67b9 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/175711 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Comparative genomic analysis of Genlisea (corkscrew plants—Lentibulariaceae) chloroplast genomes reveals an increasing loss of the ndh genesIn the carnivorous plant family Lentibulariaceae, all three genome compartments (nuclear, chloroplast, and mitochondria) have some of the highest rates of nucleotide substitutions across angiosperms. While the genera Genlisea and Utricularia have the smallest known flowering plant nuclear genomes, the chloroplast genomes (cpDNA) are mostly structurally conserved except for deletion and/or pseudogenization of the NAD(P)H-dehydrogenase complex (ndh) genes known to be involved in stress conditions of low light or CO2 concentrations. In order to determine how the cpDNA are changing, and to better understand the evolutionary history within the Genlisea genus, we sequenced, assembled and analyzed complete cpDNA from six species (G. aurea, G. filiformis, G. pygmaea, G. repens, G. tuberosa and G. violacea) together with the publicly available G. margaretae cpDNA. In general, the cpDNA structure among the analyzed Genlisea species is highly similar. However, we found that the plastidial ndh genes underwent a progressive process of degradation similar to the other terrestrial Lentibulariaceae cpDNA analyzed to date, but in contrast to the aquatic species. Contrary to current thinking that the terrestrial environment is a more stressful environment and thus requiring the ndh genes, we provide evidence that in the Lentibulariaceae the terrestrial forms have progressive loss while the aquatic forms have the eleven plastidial ndh genes intact. Therefore, the Lentibulariaceae system provides an important opportunity to understand the evolutionary forces that govern the transition to an aquatic environment and may provide insight into how plants manage water stress at a genome scale.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Universidade Estadual Paulista (Unesp) Botucatu Instituto de BiociênciasJ. Craig Venter Institute10X GenomicsUniversidade Estadual Paulista (Unesp) Faculdade de Ciências Agrárias e Veterinárias Jaboticabal Departamento de TecnologiaUniversidade Estadual Paulista (Unesp) Faculdade de Ciências Agrárias e Veterinárias Jaboticabal Departamento de Biologia Aplicada à AgropecuáriaUniversidade Estadual Paulista (Unesp) Botucatu Instituto de BiociênciasUniversidade Estadual Paulista (Unesp) Faculdade de Ciências Agrárias e Veterinárias Jaboticabal Departamento de TecnologiaUniversidade Estadual Paulista (Unesp) Faculdade de Ciências Agrárias e Veterinárias Jaboticabal Departamento de Biologia Aplicada à AgropecuáriaFAPESP: 2013/05144-0FAPESP: 2013/25164-6CNPq: 309040/2014-0Universidade Estadual Paulista (Unesp)J. Craig Venter Institute10X GenomicsSilva, Saura R. [UNESP]Michael, Todd P.Meer, Elliott J.Pinheiro, Daniel G. [UNESP]Varani, Alessandro M. [UNESP]Miranda, Vitor F. O. [UNESP]2018-12-11T17:17:12Z2018-12-11T17:17:12Z2018-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://dx.doi.org/10.1371/journal.pone.0190321PLoS ONE, v. 13, n. 1, 2018.1932-6203http://hdl.handle.net/11449/17571110.1371/journal.pone.01903212-s2.0-850399396152-s2.0-85039939615.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPLoS ONE1,164info:eu-repo/semantics/openAccess2024-06-07T15:32:34Zoai:repositorio.unesp.br:11449/175711Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:41:53.460178Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Comparative genomic analysis of Genlisea (corkscrew plants—Lentibulariaceae) chloroplast genomes reveals an increasing loss of the ndh genes |
title |
Comparative genomic analysis of Genlisea (corkscrew plants—Lentibulariaceae) chloroplast genomes reveals an increasing loss of the ndh genes |
spellingShingle |
Comparative genomic analysis of Genlisea (corkscrew plants—Lentibulariaceae) chloroplast genomes reveals an increasing loss of the ndh genes Silva, Saura R. [UNESP] |
title_short |
Comparative genomic analysis of Genlisea (corkscrew plants—Lentibulariaceae) chloroplast genomes reveals an increasing loss of the ndh genes |
title_full |
Comparative genomic analysis of Genlisea (corkscrew plants—Lentibulariaceae) chloroplast genomes reveals an increasing loss of the ndh genes |
title_fullStr |
Comparative genomic analysis of Genlisea (corkscrew plants—Lentibulariaceae) chloroplast genomes reveals an increasing loss of the ndh genes |
title_full_unstemmed |
Comparative genomic analysis of Genlisea (corkscrew plants—Lentibulariaceae) chloroplast genomes reveals an increasing loss of the ndh genes |
title_sort |
Comparative genomic analysis of Genlisea (corkscrew plants—Lentibulariaceae) chloroplast genomes reveals an increasing loss of the ndh genes |
author |
Silva, Saura R. [UNESP] |
author_facet |
Silva, Saura R. [UNESP] Michael, Todd P. Meer, Elliott J. Pinheiro, Daniel G. [UNESP] Varani, Alessandro M. [UNESP] Miranda, Vitor F. O. [UNESP] |
author_role |
author |
author2 |
Michael, Todd P. Meer, Elliott J. Pinheiro, Daniel G. [UNESP] Varani, Alessandro M. [UNESP] Miranda, Vitor F. O. [UNESP] |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) J. Craig Venter Institute 10X Genomics |
dc.contributor.author.fl_str_mv |
Silva, Saura R. [UNESP] Michael, Todd P. Meer, Elliott J. Pinheiro, Daniel G. [UNESP] Varani, Alessandro M. [UNESP] Miranda, Vitor F. O. [UNESP] |
description |
In the carnivorous plant family Lentibulariaceae, all three genome compartments (nuclear, chloroplast, and mitochondria) have some of the highest rates of nucleotide substitutions across angiosperms. While the genera Genlisea and Utricularia have the smallest known flowering plant nuclear genomes, the chloroplast genomes (cpDNA) are mostly structurally conserved except for deletion and/or pseudogenization of the NAD(P)H-dehydrogenase complex (ndh) genes known to be involved in stress conditions of low light or CO2 concentrations. In order to determine how the cpDNA are changing, and to better understand the evolutionary history within the Genlisea genus, we sequenced, assembled and analyzed complete cpDNA from six species (G. aurea, G. filiformis, G. pygmaea, G. repens, G. tuberosa and G. violacea) together with the publicly available G. margaretae cpDNA. In general, the cpDNA structure among the analyzed Genlisea species is highly similar. However, we found that the plastidial ndh genes underwent a progressive process of degradation similar to the other terrestrial Lentibulariaceae cpDNA analyzed to date, but in contrast to the aquatic species. Contrary to current thinking that the terrestrial environment is a more stressful environment and thus requiring the ndh genes, we provide evidence that in the Lentibulariaceae the terrestrial forms have progressive loss while the aquatic forms have the eleven plastidial ndh genes intact. Therefore, the Lentibulariaceae system provides an important opportunity to understand the evolutionary forces that govern the transition to an aquatic environment and may provide insight into how plants manage water stress at a genome scale. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12-11T17:17:12Z 2018-12-11T17:17:12Z 2018-01-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1371/journal.pone.0190321 PLoS ONE, v. 13, n. 1, 2018. 1932-6203 http://hdl.handle.net/11449/175711 10.1371/journal.pone.0190321 2-s2.0-85039939615 2-s2.0-85039939615.pdf |
url |
http://dx.doi.org/10.1371/journal.pone.0190321 http://hdl.handle.net/11449/175711 |
identifier_str_mv |
PLoS ONE, v. 13, n. 1, 2018. 1932-6203 10.1371/journal.pone.0190321 2-s2.0-85039939615 2-s2.0-85039939615.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
PLoS ONE 1,164 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129348398481408 |