Classificação de pinturas com aprendizado de máquina
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Trabalho de conclusão de curso |
Idioma: | por |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/213838 |
Resumo: | This work intends to explore different architectures of Convolutional Neural Networks to classify paintings according to their authors. Such is the complexity of the problem, it was necessary to use the technique in which consists of exhaustively training the network with millions of samples on a given basis and then transfer this knowledge to the proposed problem. We made use of five network architectures: VGG16, Inception, Xception, ResNet and InceptionResnet. The dataset used was the WikiArt Dataset, in which all painters with more than 19.000 works were selected, totaling 23 classes for categorization. were balanced according to the number of images present. It was evident in the experiments the effectiveness of Inception network and its variants. All training was carried out on Google’s Colab platform, in order to optimize training time, which is not short on home computers. |
id |
UNSP_52f7407b2793a865cecf73824a912c24 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/213838 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Classificação de pinturas com aprendizado de máquinaFine arts painting classification using machine learningMachine learningConvolutional Neural NetworkImage recognitionClassificationAprendizado de máquinaReconhecimento imagensClassificaçãoThis work intends to explore different architectures of Convolutional Neural Networks to classify paintings according to their authors. Such is the complexity of the problem, it was necessary to use the technique in which consists of exhaustively training the network with millions of samples on a given basis and then transfer this knowledge to the proposed problem. We made use of five network architectures: VGG16, Inception, Xception, ResNet and InceptionResnet. The dataset used was the WikiArt Dataset, in which all painters with more than 19.000 works were selected, totaling 23 classes for categorization. were balanced according to the number of images present. It was evident in the experiments the effectiveness of Inception network and its variants. All training was carried out on Google’s Colab platform, in order to optimize training time, which is not short on home computers.Este trabalho pretende explorar diferentes arquiteturas de Redes Neurais Convolucionais para classificar pinturas de acordo com seus autores. Tal a complexidade do problema foi necessário utilizar a técnica em que consiste em treinar exaustivamente a rede com milhões de amostras em uma determinada base e depois transferir esse conhecimento para o problema proposto. Fizemos uso de cinco arquiteturas de redes: VGG16, Inception, Xception, ResNet e InceptionResnet. A base utilizada foi a WikiArt Dataset, em que todos os pintores com mais de 19,000 obras foram selecionados, totalizando 23 classes para categorização, sendo que as classes foram balanceadas conforme o número de imagens presentes. Ficou evidente nos experimentos a eficácia da rede Inception e suas variantes. Todo o treinamento foi realizado na plataforma Colab do Google, de modo a otimizar o tempo de treinamento, que não é breve em computadores domésticos.Não recebi financiamentoUniversidade Estadual Paulista (Unesp)Pires, Rafael GonçalvesUniversidade Estadual Paulista (Unesp)Vinhas, Lucas Gianoglio2021-08-04T12:43:57Z2021-08-04T12:43:57Z2021-07-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisapplication/pdfhttp://hdl.handle.net/11449/213838porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-01-11T06:26:04Zoai:repositorio.unesp.br:11449/213838Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:40:14.910385Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Classificação de pinturas com aprendizado de máquina Fine arts painting classification using machine learning |
title |
Classificação de pinturas com aprendizado de máquina |
spellingShingle |
Classificação de pinturas com aprendizado de máquina Vinhas, Lucas Gianoglio Machine learning Convolutional Neural Network Image recognition Classification Aprendizado de máquina Reconhecimento imagens Classificação |
title_short |
Classificação de pinturas com aprendizado de máquina |
title_full |
Classificação de pinturas com aprendizado de máquina |
title_fullStr |
Classificação de pinturas com aprendizado de máquina |
title_full_unstemmed |
Classificação de pinturas com aprendizado de máquina |
title_sort |
Classificação de pinturas com aprendizado de máquina |
author |
Vinhas, Lucas Gianoglio |
author_facet |
Vinhas, Lucas Gianoglio |
author_role |
author |
dc.contributor.none.fl_str_mv |
Pires, Rafael Gonçalves Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Vinhas, Lucas Gianoglio |
dc.subject.por.fl_str_mv |
Machine learning Convolutional Neural Network Image recognition Classification Aprendizado de máquina Reconhecimento imagens Classificação |
topic |
Machine learning Convolutional Neural Network Image recognition Classification Aprendizado de máquina Reconhecimento imagens Classificação |
description |
This work intends to explore different architectures of Convolutional Neural Networks to classify paintings according to their authors. Such is the complexity of the problem, it was necessary to use the technique in which consists of exhaustively training the network with millions of samples on a given basis and then transfer this knowledge to the proposed problem. We made use of five network architectures: VGG16, Inception, Xception, ResNet and InceptionResnet. The dataset used was the WikiArt Dataset, in which all painters with more than 19.000 works were selected, totaling 23 classes for categorization. were balanced according to the number of images present. It was evident in the experiments the effectiveness of Inception network and its variants. All training was carried out on Google’s Colab platform, in order to optimize training time, which is not short on home computers. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-08-04T12:43:57Z 2021-08-04T12:43:57Z 2021-07-21 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/11449/213838 |
url |
http://hdl.handle.net/11449/213838 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
publisher.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129449261006848 |