Classificação de pinturas com aprendizado de máquina

Detalhes bibliográficos
Autor(a) principal: Vinhas, Lucas Gianoglio
Data de Publicação: 2021
Tipo de documento: Trabalho de conclusão de curso
Idioma: por
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/213838
Resumo: This work intends to explore different architectures of Convolutional Neural Networks to classify paintings according to their authors. Such is the complexity of the problem, it was necessary to use the technique in which consists of exhaustively training the network with millions of samples on a given basis and then transfer this knowledge to the proposed problem. We made use of five network architectures: VGG16, Inception, Xception, ResNet and InceptionResnet. The dataset used was the WikiArt Dataset, in which all painters with more than 19.000 works were selected, totaling 23 classes for categorization. were balanced according to the number of images present. It was evident in the experiments the effectiveness of Inception network and its variants. All training was carried out on Google’s Colab platform, in order to optimize training time, which is not short on home computers.
id UNSP_52f7407b2793a865cecf73824a912c24
oai_identifier_str oai:repositorio.unesp.br:11449/213838
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Classificação de pinturas com aprendizado de máquinaFine arts painting classification using machine learningMachine learningConvolutional Neural NetworkImage recognitionClassificationAprendizado de máquinaReconhecimento imagensClassificaçãoThis work intends to explore different architectures of Convolutional Neural Networks to classify paintings according to their authors. Such is the complexity of the problem, it was necessary to use the technique in which consists of exhaustively training the network with millions of samples on a given basis and then transfer this knowledge to the proposed problem. We made use of five network architectures: VGG16, Inception, Xception, ResNet and InceptionResnet. The dataset used was the WikiArt Dataset, in which all painters with more than 19.000 works were selected, totaling 23 classes for categorization. were balanced according to the number of images present. It was evident in the experiments the effectiveness of Inception network and its variants. All training was carried out on Google’s Colab platform, in order to optimize training time, which is not short on home computers.Este trabalho pretende explorar diferentes arquiteturas de Redes Neurais Convolucionais para classificar pinturas de acordo com seus autores. Tal a complexidade do problema foi necessário utilizar a técnica em que consiste em treinar exaustivamente a rede com milhões de amostras em uma determinada base e depois transferir esse conhecimento para o problema proposto. Fizemos uso de cinco arquiteturas de redes: VGG16, Inception, Xception, ResNet e InceptionResnet. A base utilizada foi a WikiArt Dataset, em que todos os pintores com mais de 19,000 obras foram selecionados, totalizando 23 classes para categorização, sendo que as classes foram balanceadas conforme o número de imagens presentes. Ficou evidente nos experimentos a eficácia da rede Inception e suas variantes. Todo o treinamento foi realizado na plataforma Colab do Google, de modo a otimizar o tempo de treinamento, que não é breve em computadores domésticos.Não recebi financiamentoUniversidade Estadual Paulista (Unesp)Pires, Rafael GonçalvesUniversidade Estadual Paulista (Unesp)Vinhas, Lucas Gianoglio2021-08-04T12:43:57Z2021-08-04T12:43:57Z2021-07-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisapplication/pdfhttp://hdl.handle.net/11449/213838porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-01-11T06:26:04Zoai:repositorio.unesp.br:11449/213838Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:40:14.910385Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Classificação de pinturas com aprendizado de máquina
Fine arts painting classification using machine learning
title Classificação de pinturas com aprendizado de máquina
spellingShingle Classificação de pinturas com aprendizado de máquina
Vinhas, Lucas Gianoglio
Machine learning
Convolutional Neural Network
Image recognition
Classification
Aprendizado de máquina
Reconhecimento imagens
Classificação
title_short Classificação de pinturas com aprendizado de máquina
title_full Classificação de pinturas com aprendizado de máquina
title_fullStr Classificação de pinturas com aprendizado de máquina
title_full_unstemmed Classificação de pinturas com aprendizado de máquina
title_sort Classificação de pinturas com aprendizado de máquina
author Vinhas, Lucas Gianoglio
author_facet Vinhas, Lucas Gianoglio
author_role author
dc.contributor.none.fl_str_mv Pires, Rafael Gonçalves
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Vinhas, Lucas Gianoglio
dc.subject.por.fl_str_mv Machine learning
Convolutional Neural Network
Image recognition
Classification
Aprendizado de máquina
Reconhecimento imagens
Classificação
topic Machine learning
Convolutional Neural Network
Image recognition
Classification
Aprendizado de máquina
Reconhecimento imagens
Classificação
description This work intends to explore different architectures of Convolutional Neural Networks to classify paintings according to their authors. Such is the complexity of the problem, it was necessary to use the technique in which consists of exhaustively training the network with millions of samples on a given basis and then transfer this knowledge to the proposed problem. We made use of five network architectures: VGG16, Inception, Xception, ResNet and InceptionResnet. The dataset used was the WikiArt Dataset, in which all painters with more than 19.000 works were selected, totaling 23 classes for categorization. were balanced according to the number of images present. It was evident in the experiments the effectiveness of Inception network and its variants. All training was carried out on Google’s Colab platform, in order to optimize training time, which is not short on home computers.
publishDate 2021
dc.date.none.fl_str_mv 2021-08-04T12:43:57Z
2021-08-04T12:43:57Z
2021-07-21
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11449/213838
url http://hdl.handle.net/11449/213838
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129449261006848