Artificial neural networks applied to the classification of hair samples according to pigment and sex using non-invasive analytical techniques
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1002/xrs.3163 http://hdl.handle.net/11449/198957 |
Resumo: | In this study, we investigated the possibility of using an artificial neural network (ANN) to classify human hair samples according to pigment (original or bleached hair) and sex (female or male) from numerical data obtained by wavelength dispersive X-ray fluorescence (WDXRF) and by laser-induced breakdown spectroscopy (LIBS). The results were promising, showing that the developed ANNs are able to classify the pigment and donor sex of hair samples with 100% and 89.5% accuracy, respectively, in the test set using WDXRF data. For the LIBS data in the test set, 100% of the pigment classifications were correct, and 78.9% of the donor sex classifications were correct. |
id |
UNSP_5302344529ba0e16cee1074dcc0244f4 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/198957 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Artificial neural networks applied to the classification of hair samples according to pigment and sex using non-invasive analytical techniquesIn this study, we investigated the possibility of using an artificial neural network (ANN) to classify human hair samples according to pigment (original or bleached hair) and sex (female or male) from numerical data obtained by wavelength dispersive X-ray fluorescence (WDXRF) and by laser-induced breakdown spectroscopy (LIBS). The results were promising, showing that the developed ANNs are able to classify the pigment and donor sex of hair samples with 100% and 89.5% accuracy, respectively, in the test set using WDXRF data. For the LIBS data in the test set, 100% of the pigment classifications were correct, and 78.9% of the donor sex classifications were correct.Instituto de Química Universidade Estadual Paulista (Unesp)Instituto de Química Universidade Estadual Paulista (Unesp)Universidade Estadual Paulista (Unesp)Berto, Tamires Messias [UNESP]Santos, Mônica Cardoso [UNESP]Pereira, Fabíola Manhas Verbi [UNESP]Filletti, Érica Regina [UNESP]2020-12-12T01:26:39Z2020-12-12T01:26:39Z2020-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1002/xrs.3163X-Ray Spectrometry.1097-45390049-8246http://hdl.handle.net/11449/19895710.1002/xrs.31632-s2.0-8508611574557044454736540240000-0002-8117-2108Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengX-Ray Spectrometryinfo:eu-repo/semantics/openAccess2021-10-22T21:15:50Zoai:repositorio.unesp.br:11449/198957Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T13:38:03.061288Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Artificial neural networks applied to the classification of hair samples according to pigment and sex using non-invasive analytical techniques |
title |
Artificial neural networks applied to the classification of hair samples according to pigment and sex using non-invasive analytical techniques |
spellingShingle |
Artificial neural networks applied to the classification of hair samples according to pigment and sex using non-invasive analytical techniques Berto, Tamires Messias [UNESP] |
title_short |
Artificial neural networks applied to the classification of hair samples according to pigment and sex using non-invasive analytical techniques |
title_full |
Artificial neural networks applied to the classification of hair samples according to pigment and sex using non-invasive analytical techniques |
title_fullStr |
Artificial neural networks applied to the classification of hair samples according to pigment and sex using non-invasive analytical techniques |
title_full_unstemmed |
Artificial neural networks applied to the classification of hair samples according to pigment and sex using non-invasive analytical techniques |
title_sort |
Artificial neural networks applied to the classification of hair samples according to pigment and sex using non-invasive analytical techniques |
author |
Berto, Tamires Messias [UNESP] |
author_facet |
Berto, Tamires Messias [UNESP] Santos, Mônica Cardoso [UNESP] Pereira, Fabíola Manhas Verbi [UNESP] Filletti, Érica Regina [UNESP] |
author_role |
author |
author2 |
Santos, Mônica Cardoso [UNESP] Pereira, Fabíola Manhas Verbi [UNESP] Filletti, Érica Regina [UNESP] |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Berto, Tamires Messias [UNESP] Santos, Mônica Cardoso [UNESP] Pereira, Fabíola Manhas Verbi [UNESP] Filletti, Érica Regina [UNESP] |
description |
In this study, we investigated the possibility of using an artificial neural network (ANN) to classify human hair samples according to pigment (original or bleached hair) and sex (female or male) from numerical data obtained by wavelength dispersive X-ray fluorescence (WDXRF) and by laser-induced breakdown spectroscopy (LIBS). The results were promising, showing that the developed ANNs are able to classify the pigment and donor sex of hair samples with 100% and 89.5% accuracy, respectively, in the test set using WDXRF data. For the LIBS data in the test set, 100% of the pigment classifications were correct, and 78.9% of the donor sex classifications were correct. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-12T01:26:39Z 2020-12-12T01:26:39Z 2020-01-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1002/xrs.3163 X-Ray Spectrometry. 1097-4539 0049-8246 http://hdl.handle.net/11449/198957 10.1002/xrs.3163 2-s2.0-85086115745 5704445473654024 0000-0002-8117-2108 |
url |
http://dx.doi.org/10.1002/xrs.3163 http://hdl.handle.net/11449/198957 |
identifier_str_mv |
X-Ray Spectrometry. 1097-4539 0049-8246 10.1002/xrs.3163 2-s2.0-85086115745 5704445473654024 0000-0002-8117-2108 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
X-Ray Spectrometry |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128255686868992 |