Artificial neural networks applied to the classification of hair samples according to pigment and sex using non-invasive analytical techniques

Detalhes bibliográficos
Autor(a) principal: Berto, Tamires Messias [UNESP]
Data de Publicação: 2020
Outros Autores: Santos, Mônica Cardoso [UNESP], Pereira, Fabíola Manhas Verbi [UNESP], Filletti, Érica Regina [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1002/xrs.3163
http://hdl.handle.net/11449/198957
Resumo: In this study, we investigated the possibility of using an artificial neural network (ANN) to classify human hair samples according to pigment (original or bleached hair) and sex (female or male) from numerical data obtained by wavelength dispersive X-ray fluorescence (WDXRF) and by laser-induced breakdown spectroscopy (LIBS). The results were promising, showing that the developed ANNs are able to classify the pigment and donor sex of hair samples with 100% and 89.5% accuracy, respectively, in the test set using WDXRF data. For the LIBS data in the test set, 100% of the pigment classifications were correct, and 78.9% of the donor sex classifications were correct.
id UNSP_5302344529ba0e16cee1074dcc0244f4
oai_identifier_str oai:repositorio.unesp.br:11449/198957
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Artificial neural networks applied to the classification of hair samples according to pigment and sex using non-invasive analytical techniquesIn this study, we investigated the possibility of using an artificial neural network (ANN) to classify human hair samples according to pigment (original or bleached hair) and sex (female or male) from numerical data obtained by wavelength dispersive X-ray fluorescence (WDXRF) and by laser-induced breakdown spectroscopy (LIBS). The results were promising, showing that the developed ANNs are able to classify the pigment and donor sex of hair samples with 100% and 89.5% accuracy, respectively, in the test set using WDXRF data. For the LIBS data in the test set, 100% of the pigment classifications were correct, and 78.9% of the donor sex classifications were correct.Instituto de Química Universidade Estadual Paulista (Unesp)Instituto de Química Universidade Estadual Paulista (Unesp)Universidade Estadual Paulista (Unesp)Berto, Tamires Messias [UNESP]Santos, Mônica Cardoso [UNESP]Pereira, Fabíola Manhas Verbi [UNESP]Filletti, Érica Regina [UNESP]2020-12-12T01:26:39Z2020-12-12T01:26:39Z2020-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1002/xrs.3163X-Ray Spectrometry.1097-45390049-8246http://hdl.handle.net/11449/19895710.1002/xrs.31632-s2.0-8508611574557044454736540240000-0002-8117-2108Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengX-Ray Spectrometryinfo:eu-repo/semantics/openAccess2021-10-22T21:15:50Zoai:repositorio.unesp.br:11449/198957Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T13:38:03.061288Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Artificial neural networks applied to the classification of hair samples according to pigment and sex using non-invasive analytical techniques
title Artificial neural networks applied to the classification of hair samples according to pigment and sex using non-invasive analytical techniques
spellingShingle Artificial neural networks applied to the classification of hair samples according to pigment and sex using non-invasive analytical techniques
Berto, Tamires Messias [UNESP]
title_short Artificial neural networks applied to the classification of hair samples according to pigment and sex using non-invasive analytical techniques
title_full Artificial neural networks applied to the classification of hair samples according to pigment and sex using non-invasive analytical techniques
title_fullStr Artificial neural networks applied to the classification of hair samples according to pigment and sex using non-invasive analytical techniques
title_full_unstemmed Artificial neural networks applied to the classification of hair samples according to pigment and sex using non-invasive analytical techniques
title_sort Artificial neural networks applied to the classification of hair samples according to pigment and sex using non-invasive analytical techniques
author Berto, Tamires Messias [UNESP]
author_facet Berto, Tamires Messias [UNESP]
Santos, Mônica Cardoso [UNESP]
Pereira, Fabíola Manhas Verbi [UNESP]
Filletti, Érica Regina [UNESP]
author_role author
author2 Santos, Mônica Cardoso [UNESP]
Pereira, Fabíola Manhas Verbi [UNESP]
Filletti, Érica Regina [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Berto, Tamires Messias [UNESP]
Santos, Mônica Cardoso [UNESP]
Pereira, Fabíola Manhas Verbi [UNESP]
Filletti, Érica Regina [UNESP]
description In this study, we investigated the possibility of using an artificial neural network (ANN) to classify human hair samples according to pigment (original or bleached hair) and sex (female or male) from numerical data obtained by wavelength dispersive X-ray fluorescence (WDXRF) and by laser-induced breakdown spectroscopy (LIBS). The results were promising, showing that the developed ANNs are able to classify the pigment and donor sex of hair samples with 100% and 89.5% accuracy, respectively, in the test set using WDXRF data. For the LIBS data in the test set, 100% of the pigment classifications were correct, and 78.9% of the donor sex classifications were correct.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-12T01:26:39Z
2020-12-12T01:26:39Z
2020-01-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1002/xrs.3163
X-Ray Spectrometry.
1097-4539
0049-8246
http://hdl.handle.net/11449/198957
10.1002/xrs.3163
2-s2.0-85086115745
5704445473654024
0000-0002-8117-2108
url http://dx.doi.org/10.1002/xrs.3163
http://hdl.handle.net/11449/198957
identifier_str_mv X-Ray Spectrometry.
1097-4539
0049-8246
10.1002/xrs.3163
2-s2.0-85086115745
5704445473654024
0000-0002-8117-2108
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv X-Ray Spectrometry
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128255686868992