Stability theory
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , , , |
Tipo de documento: | Capítulo de livro |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1002/9781119655022.ch8 http://hdl.handle.net/11449/230089 |
Resumo: | This chapter presents the study of the stability theory for generalized ordinary differential equations (ODEs). The results on the stability of the trivial solution in the framework of the generalized ODE are inspired in the theory, developed by Aleksandr M. Lyapunov on the stability of solutions for classic ODEs. Converse Lyapunov theorems confirm the effectiveness of the Direct Method of Lyapunov. The chapter presents a concept of a Lyapunov functional for generalized ODEs. The concept of variational stability for ordinary differential equations was introduced by H. Okamura in 1943, who called it strong stability. The chapter presents direct methods of Lyapunov for uniform stability and for uniform asymptotic stability of the trivial solution of the measure differential equations. It examines the concepts of Lyapunov stability in the framework of dynamic equations on time scales. The chapter provides the results for measure differential equations and for dynamic equations on time scales. |
id |
UNSP_5318f240800f824ebb8acf02b0cf5b23 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/230089 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Stability theoryAsymptotic stabilityDynamic equationsLyapunov theoremsMeasure differential equationsOrdinary differential equationsStability theoryTrivial solutionThis chapter presents the study of the stability theory for generalized ordinary differential equations (ODEs). The results on the stability of the trivial solution in the framework of the generalized ODE are inspired in the theory, developed by Aleksandr M. Lyapunov on the stability of solutions for classic ODEs. Converse Lyapunov theorems confirm the effectiveness of the Direct Method of Lyapunov. The chapter presents a concept of a Lyapunov functional for generalized ODEs. The concept of variational stability for ordinary differential equations was introduced by H. Okamura in 1943, who called it strong stability. The chapter presents direct methods of Lyapunov for uniform stability and for uniform asymptotic stability of the trivial solution of the measure differential equations. It examines the concepts of Lyapunov stability in the framework of dynamic equations on time scales. The chapter provides the results for measure differential equations and for dynamic equations on time scales.Departamento de Matemática Instituto de Geociências e Ciências Exatas Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP)Departamento de Matemática Instituto de Ciências Matemáticas e de Computação (ICMC) Universidade de São PauloDepartamento de Matemática Aplicada e Estatística Instituto de Ciências Matemáticas e de Computação (ICMC) Universidade de São PauloDepartamento de Matemática Centro de Ciências Exatas Universidade Estadual de MaringáDepartamento de Matemáticas y Estadística División de Ciencias Básicas Universidad del NorteDepartamento de Matemática Instituto de Ciências Exatas Universidade de BrasíliaDepartamento de Matemática Instituto de Ciências Exatas Universidade Federal de Juiz de ForaDepartamento de Matemática Instituto de Geociências e Ciências Exatas Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP)Universidade Estadual Paulista (UNESP)Universidade de São Paulo (USP)Universidade Estadual de Maringá (UEM)Universidad del NorteUniversidade de Brasília (UnB)Universidade Federal de Juiz de ForaAfonso, Suzete M. [UNESP]Da Silva, Fernanda AndradeBonotto, Everaldo M.Federson, MárciaGimenes, Luciene P.Grau, RogelioMesquita, Jaqueline G.Toon, Eduard2022-04-29T08:37:36Z2022-04-29T08:37:36Z2021-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookPart241-294http://dx.doi.org/10.1002/9781119655022.ch8Generalized Ordinary Differential Equations in Abstract Spaces and Applications, p. 241-294.http://hdl.handle.net/11449/23008910.1002/9781119655022.ch82-s2.0-85121481961Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengGeneralized Ordinary Differential Equations in Abstract Spaces and Applicationsinfo:eu-repo/semantics/openAccess2022-04-29T08:37:36Zoai:repositorio.unesp.br:11449/230089Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:42:30.943490Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Stability theory |
title |
Stability theory |
spellingShingle |
Stability theory Afonso, Suzete M. [UNESP] Asymptotic stability Dynamic equations Lyapunov theorems Measure differential equations Ordinary differential equations Stability theory Trivial solution |
title_short |
Stability theory |
title_full |
Stability theory |
title_fullStr |
Stability theory |
title_full_unstemmed |
Stability theory |
title_sort |
Stability theory |
author |
Afonso, Suzete M. [UNESP] |
author_facet |
Afonso, Suzete M. [UNESP] Da Silva, Fernanda Andrade Bonotto, Everaldo M. Federson, Márcia Gimenes, Luciene P. Grau, Rogelio Mesquita, Jaqueline G. Toon, Eduard |
author_role |
author |
author2 |
Da Silva, Fernanda Andrade Bonotto, Everaldo M. Federson, Márcia Gimenes, Luciene P. Grau, Rogelio Mesquita, Jaqueline G. Toon, Eduard |
author2_role |
author author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) Universidade de São Paulo (USP) Universidade Estadual de Maringá (UEM) Universidad del Norte Universidade de Brasília (UnB) Universidade Federal de Juiz de Fora |
dc.contributor.author.fl_str_mv |
Afonso, Suzete M. [UNESP] Da Silva, Fernanda Andrade Bonotto, Everaldo M. Federson, Márcia Gimenes, Luciene P. Grau, Rogelio Mesquita, Jaqueline G. Toon, Eduard |
dc.subject.por.fl_str_mv |
Asymptotic stability Dynamic equations Lyapunov theorems Measure differential equations Ordinary differential equations Stability theory Trivial solution |
topic |
Asymptotic stability Dynamic equations Lyapunov theorems Measure differential equations Ordinary differential equations Stability theory Trivial solution |
description |
This chapter presents the study of the stability theory for generalized ordinary differential equations (ODEs). The results on the stability of the trivial solution in the framework of the generalized ODE are inspired in the theory, developed by Aleksandr M. Lyapunov on the stability of solutions for classic ODEs. Converse Lyapunov theorems confirm the effectiveness of the Direct Method of Lyapunov. The chapter presents a concept of a Lyapunov functional for generalized ODEs. The concept of variational stability for ordinary differential equations was introduced by H. Okamura in 1943, who called it strong stability. The chapter presents direct methods of Lyapunov for uniform stability and for uniform asymptotic stability of the trivial solution of the measure differential equations. It examines the concepts of Lyapunov stability in the framework of dynamic equations on time scales. The chapter provides the results for measure differential equations and for dynamic equations on time scales. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01-01 2022-04-29T08:37:36Z 2022-04-29T08:37:36Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bookPart |
format |
bookPart |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1002/9781119655022.ch8 Generalized Ordinary Differential Equations in Abstract Spaces and Applications, p. 241-294. http://hdl.handle.net/11449/230089 10.1002/9781119655022.ch8 2-s2.0-85121481961 |
url |
http://dx.doi.org/10.1002/9781119655022.ch8 http://hdl.handle.net/11449/230089 |
identifier_str_mv |
Generalized Ordinary Differential Equations in Abstract Spaces and Applications, p. 241-294. 10.1002/9781119655022.ch8 2-s2.0-85121481961 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Generalized Ordinary Differential Equations in Abstract Spaces and Applications |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
241-294 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129108617461760 |