Stability theory

Detalhes bibliográficos
Autor(a) principal: Afonso, Suzete M. [UNESP]
Data de Publicação: 2021
Outros Autores: Da Silva, Fernanda Andrade, Bonotto, Everaldo M., Federson, Márcia, Gimenes, Luciene P., Grau, Rogelio, Mesquita, Jaqueline G., Toon, Eduard
Tipo de documento: Capítulo de livro
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1002/9781119655022.ch8
http://hdl.handle.net/11449/230089
Resumo: This chapter presents the study of the stability theory for generalized ordinary differential equations (ODEs). The results on the stability of the trivial solution in the framework of the generalized ODE are inspired in the theory, developed by Aleksandr M. Lyapunov on the stability of solutions for classic ODEs. Converse Lyapunov theorems confirm the effectiveness of the Direct Method of Lyapunov. The chapter presents a concept of a Lyapunov functional for generalized ODEs. The concept of variational stability for ordinary differential equations was introduced by H. Okamura in 1943, who called it strong stability. The chapter presents direct methods of Lyapunov for uniform stability and for uniform asymptotic stability of the trivial solution of the measure differential equations. It examines the concepts of Lyapunov stability in the framework of dynamic equations on time scales. The chapter provides the results for measure differential equations and for dynamic equations on time scales.
id UNSP_5318f240800f824ebb8acf02b0cf5b23
oai_identifier_str oai:repositorio.unesp.br:11449/230089
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Stability theoryAsymptotic stabilityDynamic equationsLyapunov theoremsMeasure differential equationsOrdinary differential equationsStability theoryTrivial solutionThis chapter presents the study of the stability theory for generalized ordinary differential equations (ODEs). The results on the stability of the trivial solution in the framework of the generalized ODE are inspired in the theory, developed by Aleksandr M. Lyapunov on the stability of solutions for classic ODEs. Converse Lyapunov theorems confirm the effectiveness of the Direct Method of Lyapunov. The chapter presents a concept of a Lyapunov functional for generalized ODEs. The concept of variational stability for ordinary differential equations was introduced by H. Okamura in 1943, who called it strong stability. The chapter presents direct methods of Lyapunov for uniform stability and for uniform asymptotic stability of the trivial solution of the measure differential equations. It examines the concepts of Lyapunov stability in the framework of dynamic equations on time scales. The chapter provides the results for measure differential equations and for dynamic equations on time scales.Departamento de Matemática Instituto de Geociências e Ciências Exatas Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP)Departamento de Matemática Instituto de Ciências Matemáticas e de Computação (ICMC) Universidade de São PauloDepartamento de Matemática Aplicada e Estatística Instituto de Ciências Matemáticas e de Computação (ICMC) Universidade de São PauloDepartamento de Matemática Centro de Ciências Exatas Universidade Estadual de MaringáDepartamento de Matemáticas y Estadística División de Ciencias Básicas Universidad del NorteDepartamento de Matemática Instituto de Ciências Exatas Universidade de BrasíliaDepartamento de Matemática Instituto de Ciências Exatas Universidade Federal de Juiz de ForaDepartamento de Matemática Instituto de Geociências e Ciências Exatas Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP)Universidade Estadual Paulista (UNESP)Universidade de São Paulo (USP)Universidade Estadual de Maringá (UEM)Universidad del NorteUniversidade de Brasília (UnB)Universidade Federal de Juiz de ForaAfonso, Suzete M. [UNESP]Da Silva, Fernanda AndradeBonotto, Everaldo M.Federson, MárciaGimenes, Luciene P.Grau, RogelioMesquita, Jaqueline G.Toon, Eduard2022-04-29T08:37:36Z2022-04-29T08:37:36Z2021-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookPart241-294http://dx.doi.org/10.1002/9781119655022.ch8Generalized Ordinary Differential Equations in Abstract Spaces and Applications, p. 241-294.http://hdl.handle.net/11449/23008910.1002/9781119655022.ch82-s2.0-85121481961Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengGeneralized Ordinary Differential Equations in Abstract Spaces and Applicationsinfo:eu-repo/semantics/openAccess2022-04-29T08:37:36Zoai:repositorio.unesp.br:11449/230089Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:42:30.943490Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Stability theory
title Stability theory
spellingShingle Stability theory
Afonso, Suzete M. [UNESP]
Asymptotic stability
Dynamic equations
Lyapunov theorems
Measure differential equations
Ordinary differential equations
Stability theory
Trivial solution
title_short Stability theory
title_full Stability theory
title_fullStr Stability theory
title_full_unstemmed Stability theory
title_sort Stability theory
author Afonso, Suzete M. [UNESP]
author_facet Afonso, Suzete M. [UNESP]
Da Silva, Fernanda Andrade
Bonotto, Everaldo M.
Federson, Márcia
Gimenes, Luciene P.
Grau, Rogelio
Mesquita, Jaqueline G.
Toon, Eduard
author_role author
author2 Da Silva, Fernanda Andrade
Bonotto, Everaldo M.
Federson, Márcia
Gimenes, Luciene P.
Grau, Rogelio
Mesquita, Jaqueline G.
Toon, Eduard
author2_role author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
Universidade de São Paulo (USP)
Universidade Estadual de Maringá (UEM)
Universidad del Norte
Universidade de Brasília (UnB)
Universidade Federal de Juiz de Fora
dc.contributor.author.fl_str_mv Afonso, Suzete M. [UNESP]
Da Silva, Fernanda Andrade
Bonotto, Everaldo M.
Federson, Márcia
Gimenes, Luciene P.
Grau, Rogelio
Mesquita, Jaqueline G.
Toon, Eduard
dc.subject.por.fl_str_mv Asymptotic stability
Dynamic equations
Lyapunov theorems
Measure differential equations
Ordinary differential equations
Stability theory
Trivial solution
topic Asymptotic stability
Dynamic equations
Lyapunov theorems
Measure differential equations
Ordinary differential equations
Stability theory
Trivial solution
description This chapter presents the study of the stability theory for generalized ordinary differential equations (ODEs). The results on the stability of the trivial solution in the framework of the generalized ODE are inspired in the theory, developed by Aleksandr M. Lyapunov on the stability of solutions for classic ODEs. Converse Lyapunov theorems confirm the effectiveness of the Direct Method of Lyapunov. The chapter presents a concept of a Lyapunov functional for generalized ODEs. The concept of variational stability for ordinary differential equations was introduced by H. Okamura in 1943, who called it strong stability. The chapter presents direct methods of Lyapunov for uniform stability and for uniform asymptotic stability of the trivial solution of the measure differential equations. It examines the concepts of Lyapunov stability in the framework of dynamic equations on time scales. The chapter provides the results for measure differential equations and for dynamic equations on time scales.
publishDate 2021
dc.date.none.fl_str_mv 2021-01-01
2022-04-29T08:37:36Z
2022-04-29T08:37:36Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bookPart
format bookPart
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1002/9781119655022.ch8
Generalized Ordinary Differential Equations in Abstract Spaces and Applications, p. 241-294.
http://hdl.handle.net/11449/230089
10.1002/9781119655022.ch8
2-s2.0-85121481961
url http://dx.doi.org/10.1002/9781119655022.ch8
http://hdl.handle.net/11449/230089
identifier_str_mv Generalized Ordinary Differential Equations in Abstract Spaces and Applications, p. 241-294.
10.1002/9781119655022.ch8
2-s2.0-85121481961
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Generalized Ordinary Differential Equations in Abstract Spaces and Applications
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 241-294
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129108617461760