Neural Networks Tool Condition Monitoring in Single-point Dressing Operations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.procir.2016.01.001 http://hdl.handle.net/11449/178025 |
Resumo: | Cognitive modeling of tool wear progress is employed to obtain a dependable trend of tool wear curves for optimal utilization of tool life and productivity improvement, while preserving the surface integrity of the ground parts. This paper describes a method to characterize the dresser wear condition utilizing vibration signals by applying a cognitive paradigm, such as Artificial Neural Networks (ANNs). Dressing tests with a single-point dresser were performed in a surface grinding machine and tool wear measurements taken along the experiments. The results show that ANN processing offers an effective method for the monitoring of grinding wheel wear based on vibration signal analysis. |
id |
UNSP_532ddea7fda21766ab9b6b11b51e28e8 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/178025 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Neural Networks Tool Condition Monitoring in Single-point Dressing OperationsArtificial neural networksDressingTool wearVibration signalCognitive modeling of tool wear progress is employed to obtain a dependable trend of tool wear curves for optimal utilization of tool life and productivity improvement, while preserving the surface integrity of the ground parts. This paper describes a method to characterize the dresser wear condition utilizing vibration signals by applying a cognitive paradigm, such as Artificial Neural Networks (ANNs). Dressing tests with a single-point dresser were performed in a surface grinding machine and tool wear measurements taken along the experiments. The results show that ANN processing offers an effective method for the monitoring of grinding wheel wear based on vibration signal analysis.Fraunhofer Joint Laboratory of Excellence on Advanced Production Technology (Fh-J-LEAPT Naples) Department of Chemical Material and Industrial Production Engineering University of Naples Federico II, Piazzale Tecchio 80University Estadual Paulista-UNESP Faculty of Engineering Department of Electrical EngineeringUniversity Estadual Paulista-UNESP Faculty of Engineering Department of Electrical EngineeringUniversity of Naples Federico IIUniversidade Estadual Paulista (Unesp)D'Addona, Doriana M.Matarazzo, DavideDe Aguiar, Paulo R. [UNESP]Bianchi, Eduardo C. [UNESP]Martins, Cesar H.R. [UNESP]2018-12-11T17:28:16Z2018-12-11T17:28:16Z2016-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject431-436http://dx.doi.org/10.1016/j.procir.2016.01.001Procedia CIRP, v. 41, p. 431-436.2212-8271http://hdl.handle.net/11449/17802510.1016/j.procir.2016.01.0012-s2.0-84968779473Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProcedia CIRP0,668info:eu-repo/semantics/openAccess2024-06-28T13:55:18Zoai:repositorio.unesp.br:11449/178025Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:41:28.185531Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Neural Networks Tool Condition Monitoring in Single-point Dressing Operations |
title |
Neural Networks Tool Condition Monitoring in Single-point Dressing Operations |
spellingShingle |
Neural Networks Tool Condition Monitoring in Single-point Dressing Operations D'Addona, Doriana M. Artificial neural networks Dressing Tool wear Vibration signal |
title_short |
Neural Networks Tool Condition Monitoring in Single-point Dressing Operations |
title_full |
Neural Networks Tool Condition Monitoring in Single-point Dressing Operations |
title_fullStr |
Neural Networks Tool Condition Monitoring in Single-point Dressing Operations |
title_full_unstemmed |
Neural Networks Tool Condition Monitoring in Single-point Dressing Operations |
title_sort |
Neural Networks Tool Condition Monitoring in Single-point Dressing Operations |
author |
D'Addona, Doriana M. |
author_facet |
D'Addona, Doriana M. Matarazzo, Davide De Aguiar, Paulo R. [UNESP] Bianchi, Eduardo C. [UNESP] Martins, Cesar H.R. [UNESP] |
author_role |
author |
author2 |
Matarazzo, Davide De Aguiar, Paulo R. [UNESP] Bianchi, Eduardo C. [UNESP] Martins, Cesar H.R. [UNESP] |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
University of Naples Federico II Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
D'Addona, Doriana M. Matarazzo, Davide De Aguiar, Paulo R. [UNESP] Bianchi, Eduardo C. [UNESP] Martins, Cesar H.R. [UNESP] |
dc.subject.por.fl_str_mv |
Artificial neural networks Dressing Tool wear Vibration signal |
topic |
Artificial neural networks Dressing Tool wear Vibration signal |
description |
Cognitive modeling of tool wear progress is employed to obtain a dependable trend of tool wear curves for optimal utilization of tool life and productivity improvement, while preserving the surface integrity of the ground parts. This paper describes a method to characterize the dresser wear condition utilizing vibration signals by applying a cognitive paradigm, such as Artificial Neural Networks (ANNs). Dressing tests with a single-point dresser were performed in a surface grinding machine and tool wear measurements taken along the experiments. The results show that ANN processing offers an effective method for the monitoring of grinding wheel wear based on vibration signal analysis. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-01-01 2018-12-11T17:28:16Z 2018-12-11T17:28:16Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.procir.2016.01.001 Procedia CIRP, v. 41, p. 431-436. 2212-8271 http://hdl.handle.net/11449/178025 10.1016/j.procir.2016.01.001 2-s2.0-84968779473 |
url |
http://dx.doi.org/10.1016/j.procir.2016.01.001 http://hdl.handle.net/11449/178025 |
identifier_str_mv |
Procedia CIRP, v. 41, p. 431-436. 2212-8271 10.1016/j.procir.2016.01.001 2-s2.0-84968779473 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Procedia CIRP 0,668 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
431-436 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128845656621056 |