Electrical properties of electrochemically doped organic semiconductors using light-emitting electrochemical cells

Detalhes bibliográficos
Autor(a) principal: Gozzi, G. [UNESP]
Data de Publicação: 2016
Outros Autores: Cagnani, L. D., Faria, R. M., Santos, L. F. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/s10008-016-3219-2
http://hdl.handle.net/11449/172866
Resumo: We present a study of the electrical properties of electrochemically doped conjugated polymers using polymeric light-emitting electrochemical cells (PLECs) and interpreting the results according to a phenomenological model (PM) which assumes that, above the device turn-on voltage, the bulk transport properties of the doped organic semiconductor are responsible for the main contribution to the whole device conductivity. To confirm the predictions of this model, the dependence of the conductivity of PLECs with different parameters is evaluated and compared with the behavior expected for a doped semiconducting polymeric material. The organic semiconductor doping level, the blend concentration of organic semiconducting molecules, the device thickness, the charge carrier mobility, and the temperature are the parameters varied to perform this analysis. We observed that the device conductivity is independent of the active layer thickness, weakly dependent on the temperature, but strongly dependent on the semiconductor doping level, on the semiconductor fraction in the blend, and on the intrinsic charge carrier mobility. These results were well described by the variable range hopping (VRH) model, which has been widely employed to describe the charge transport in doped semiconducting polymeric materials, confirming the prediction of the phenomenological model. The current analysis demonstrates that PLECs are a suitable system for studying, in situ, the electrochemical doping of semiconducting polymers, permitting the evaluation of material properties as, for instance, the density of electronic charge carriers (and, consequently, the ionic charge carrier concentration) necessary to achieve the maximum electrochemical doping level of the organic semiconductor.
id UNSP_54470d762f10940ee9ae87393c20edf6
oai_identifier_str oai:repositorio.unesp.br:11449/172866
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Electrical properties of electrochemically doped organic semiconductors using light-emitting electrochemical cellsElectrical propertiesElectrochemical dopingLight-emitting electrochemical cellsOrganic electronicsSemiconducting polymersWe present a study of the electrical properties of electrochemically doped conjugated polymers using polymeric light-emitting electrochemical cells (PLECs) and interpreting the results according to a phenomenological model (PM) which assumes that, above the device turn-on voltage, the bulk transport properties of the doped organic semiconductor are responsible for the main contribution to the whole device conductivity. To confirm the predictions of this model, the dependence of the conductivity of PLECs with different parameters is evaluated and compared with the behavior expected for a doped semiconducting polymeric material. The organic semiconductor doping level, the blend concentration of organic semiconducting molecules, the device thickness, the charge carrier mobility, and the temperature are the parameters varied to perform this analysis. We observed that the device conductivity is independent of the active layer thickness, weakly dependent on the temperature, but strongly dependent on the semiconductor doping level, on the semiconductor fraction in the blend, and on the intrinsic charge carrier mobility. These results were well described by the variable range hopping (VRH) model, which has been widely employed to describe the charge transport in doped semiconducting polymeric materials, confirming the prediction of the phenomenological model. The current analysis demonstrates that PLECs are a suitable system for studying, in situ, the electrochemical doping of semiconducting polymers, permitting the evaluation of material properties as, for instance, the density of electronic charge carriers (and, consequently, the ionic charge carrier concentration) necessary to achieve the maximum electrochemical doping level of the organic semiconductor.Departamento de Física Instituto de Geociências e Ciências Exatas Universidade Estadual Paulista – UNESPInstituto de Física de São Carlos Universidade de São PauloDepartamento de Física Instituto de Biociências Letras e Ciências Exatas Universidade Estadual Paulista – UNESPDepartamento de Física Instituto de Geociências e Ciências Exatas Universidade Estadual Paulista – UNESPDepartamento de Física Instituto de Biociências Letras e Ciências Exatas Universidade Estadual Paulista – UNESPUniversidade Estadual Paulista (Unesp)Universidade de São Paulo (USP)Gozzi, G. [UNESP]Cagnani, L. D.Faria, R. M.Santos, L. F. [UNESP]2018-12-11T17:02:29Z2018-12-11T17:02:29Z2016-08-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article2127-2133application/pdfhttp://dx.doi.org/10.1007/s10008-016-3219-2Journal of Solid State Electrochemistry, v. 20, n. 8, p. 2127-2133, 2016.1432-8488http://hdl.handle.net/11449/17286610.1007/s10008-016-3219-22-s2.0-849643166742-s2.0-84964316674.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Solid State Electrochemistry0,661info:eu-repo/semantics/openAccess2023-10-06T06:05:03Zoai:repositorio.unesp.br:11449/172866Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462023-10-06T06:05:03Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Electrical properties of electrochemically doped organic semiconductors using light-emitting electrochemical cells
title Electrical properties of electrochemically doped organic semiconductors using light-emitting electrochemical cells
spellingShingle Electrical properties of electrochemically doped organic semiconductors using light-emitting electrochemical cells
Gozzi, G. [UNESP]
Electrical properties
Electrochemical doping
Light-emitting electrochemical cells
Organic electronics
Semiconducting polymers
title_short Electrical properties of electrochemically doped organic semiconductors using light-emitting electrochemical cells
title_full Electrical properties of electrochemically doped organic semiconductors using light-emitting electrochemical cells
title_fullStr Electrical properties of electrochemically doped organic semiconductors using light-emitting electrochemical cells
title_full_unstemmed Electrical properties of electrochemically doped organic semiconductors using light-emitting electrochemical cells
title_sort Electrical properties of electrochemically doped organic semiconductors using light-emitting electrochemical cells
author Gozzi, G. [UNESP]
author_facet Gozzi, G. [UNESP]
Cagnani, L. D.
Faria, R. M.
Santos, L. F. [UNESP]
author_role author
author2 Cagnani, L. D.
Faria, R. M.
Santos, L. F. [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade de São Paulo (USP)
dc.contributor.author.fl_str_mv Gozzi, G. [UNESP]
Cagnani, L. D.
Faria, R. M.
Santos, L. F. [UNESP]
dc.subject.por.fl_str_mv Electrical properties
Electrochemical doping
Light-emitting electrochemical cells
Organic electronics
Semiconducting polymers
topic Electrical properties
Electrochemical doping
Light-emitting electrochemical cells
Organic electronics
Semiconducting polymers
description We present a study of the electrical properties of electrochemically doped conjugated polymers using polymeric light-emitting electrochemical cells (PLECs) and interpreting the results according to a phenomenological model (PM) which assumes that, above the device turn-on voltage, the bulk transport properties of the doped organic semiconductor are responsible for the main contribution to the whole device conductivity. To confirm the predictions of this model, the dependence of the conductivity of PLECs with different parameters is evaluated and compared with the behavior expected for a doped semiconducting polymeric material. The organic semiconductor doping level, the blend concentration of organic semiconducting molecules, the device thickness, the charge carrier mobility, and the temperature are the parameters varied to perform this analysis. We observed that the device conductivity is independent of the active layer thickness, weakly dependent on the temperature, but strongly dependent on the semiconductor doping level, on the semiconductor fraction in the blend, and on the intrinsic charge carrier mobility. These results were well described by the variable range hopping (VRH) model, which has been widely employed to describe the charge transport in doped semiconducting polymeric materials, confirming the prediction of the phenomenological model. The current analysis demonstrates that PLECs are a suitable system for studying, in situ, the electrochemical doping of semiconducting polymers, permitting the evaluation of material properties as, for instance, the density of electronic charge carriers (and, consequently, the ionic charge carrier concentration) necessary to achieve the maximum electrochemical doping level of the organic semiconductor.
publishDate 2016
dc.date.none.fl_str_mv 2016-08-01
2018-12-11T17:02:29Z
2018-12-11T17:02:29Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s10008-016-3219-2
Journal of Solid State Electrochemistry, v. 20, n. 8, p. 2127-2133, 2016.
1432-8488
http://hdl.handle.net/11449/172866
10.1007/s10008-016-3219-2
2-s2.0-84964316674
2-s2.0-84964316674.pdf
url http://dx.doi.org/10.1007/s10008-016-3219-2
http://hdl.handle.net/11449/172866
identifier_str_mv Journal of Solid State Electrochemistry, v. 20, n. 8, p. 2127-2133, 2016.
1432-8488
10.1007/s10008-016-3219-2
2-s2.0-84964316674
2-s2.0-84964316674.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Solid State Electrochemistry
0,661
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 2127-2133
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1797789308262809600