Optimization of neural classifiers based on bayesian decision boundaries and idle neurons pruning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2002 |
Outros Autores: | |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/ICPR.2002.1047927 http://hdl.handle.net/11449/67053 |
Resumo: | In this article we describe a feature extraction algorithm for pattern classification based on Bayesian Decision Boundaries and Pruning techniques. The proposed method is capable of optimizing MLP neural classifiers by retaining those neurons in the hidden layer that realy contribute to correct classification. Also in this article we proposed a method which defines a plausible number of neurons in the hidden layer based on the stem-and-leaf graphics of training samples. Experimental investigation reveals the efficiency of the proposed method. © 2002 IEEE. |
id |
UNSP_555639ace940fd88563d00483ba9d322 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/67053 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Optimization of neural classifiers based on bayesian decision boundaries and idle neurons pruningBayesian decision boundariesNeuronsPruning techniquesAlgorithmsDecision theoryMathematical modelsNeural networksPattern recognitionIn this article we describe a feature extraction algorithm for pattern classification based on Bayesian Decision Boundaries and Pruning techniques. The proposed method is capable of optimizing MLP neural classifiers by retaining those neurons in the hidden layer that realy contribute to correct classification. Also in this article we proposed a method which defines a plausible number of neurons in the hidden layer based on the stem-and-leaf graphics of training samples. Experimental investigation reveals the efficiency of the proposed method. © 2002 IEEE.Dep. Matematica-FCT-UNESPDECOM-FEEC-UNICAMPDep. Matematica-FCT-UNESPUniversidade Estadual Paulista (Unesp)Universidade Estadual de Campinas (UNICAMP)Silvestre, Miriam Rodrigues [UNESP]Ling, Lee Luan2014-05-27T11:20:32Z2014-05-27T11:20:32Z2002-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject387-390http://dx.doi.org/10.1109/ICPR.2002.1047927Proceedings - International Conference on Pattern Recognition, v. 16, n. 3, p. 387-390, 2002.1051-4651http://hdl.handle.net/11449/6705310.1109/ICPR.2002.1047927WOS:0001778871000942-s2.0-337515753033356686459975471Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings - International Conference on Pattern Recognition0,307info:eu-repo/semantics/openAccess2024-06-19T14:32:27Zoai:repositorio.unesp.br:11449/67053Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:55:35.526782Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Optimization of neural classifiers based on bayesian decision boundaries and idle neurons pruning |
title |
Optimization of neural classifiers based on bayesian decision boundaries and idle neurons pruning |
spellingShingle |
Optimization of neural classifiers based on bayesian decision boundaries and idle neurons pruning Silvestre, Miriam Rodrigues [UNESP] Bayesian decision boundaries Neurons Pruning techniques Algorithms Decision theory Mathematical models Neural networks Pattern recognition |
title_short |
Optimization of neural classifiers based on bayesian decision boundaries and idle neurons pruning |
title_full |
Optimization of neural classifiers based on bayesian decision boundaries and idle neurons pruning |
title_fullStr |
Optimization of neural classifiers based on bayesian decision boundaries and idle neurons pruning |
title_full_unstemmed |
Optimization of neural classifiers based on bayesian decision boundaries and idle neurons pruning |
title_sort |
Optimization of neural classifiers based on bayesian decision boundaries and idle neurons pruning |
author |
Silvestre, Miriam Rodrigues [UNESP] |
author_facet |
Silvestre, Miriam Rodrigues [UNESP] Ling, Lee Luan |
author_role |
author |
author2 |
Ling, Lee Luan |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade Estadual de Campinas (UNICAMP) |
dc.contributor.author.fl_str_mv |
Silvestre, Miriam Rodrigues [UNESP] Ling, Lee Luan |
dc.subject.por.fl_str_mv |
Bayesian decision boundaries Neurons Pruning techniques Algorithms Decision theory Mathematical models Neural networks Pattern recognition |
topic |
Bayesian decision boundaries Neurons Pruning techniques Algorithms Decision theory Mathematical models Neural networks Pattern recognition |
description |
In this article we describe a feature extraction algorithm for pattern classification based on Bayesian Decision Boundaries and Pruning techniques. The proposed method is capable of optimizing MLP neural classifiers by retaining those neurons in the hidden layer that realy contribute to correct classification. Also in this article we proposed a method which defines a plausible number of neurons in the hidden layer based on the stem-and-leaf graphics of training samples. Experimental investigation reveals the efficiency of the proposed method. © 2002 IEEE. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002-12-01 2014-05-27T11:20:32Z 2014-05-27T11:20:32Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/ICPR.2002.1047927 Proceedings - International Conference on Pattern Recognition, v. 16, n. 3, p. 387-390, 2002. 1051-4651 http://hdl.handle.net/11449/67053 10.1109/ICPR.2002.1047927 WOS:000177887100094 2-s2.0-33751575303 3356686459975471 |
url |
http://dx.doi.org/10.1109/ICPR.2002.1047927 http://hdl.handle.net/11449/67053 |
identifier_str_mv |
Proceedings - International Conference on Pattern Recognition, v. 16, n. 3, p. 387-390, 2002. 1051-4651 10.1109/ICPR.2002.1047927 WOS:000177887100094 2-s2.0-33751575303 3356686459975471 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Proceedings - International Conference on Pattern Recognition 0,307 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
387-390 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129374250074112 |