Limit Cycles Bifurcating from an Invisible Fold–Fold in Planar Piecewise Hamiltonian Systems

Detalhes bibliográficos
Autor(a) principal: de Carvalho Braga, Denis
Data de Publicação: 2020
Outros Autores: Fernandes da Fonseca, Alexander, Gonçalves, Luiz Fernando [UNESP], Mello, Luis Fernando
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/s10883-020-09478-2
http://hdl.handle.net/11449/198626
Resumo: The aim of this article is twofold. Firstly, we study the existence of limit cycles in a family of piecewise smooth vector fields corresponding to an unfolding of an invisible fold–fold singularity. More precisely, given a positive integer k, we prove that this family has exactly k hyperbolic crossing limit cycles in a suitable neighborhood of this singularity. Secondly, we provide a complete study relating the existence and stability of these crossing limit cycles with the limit cycles of the family of smooth vector fields obtained by the regularization method. This relationship is obtained by studying the equivalence between the signs of the Lyapunov coefficients of the family of piecewise smooth vector fields and the ones of its regularization.
id UNSP_55932bb94a6f647db2b070d4f06212b9
oai_identifier_str oai:repositorio.unesp.br:11449/198626
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Limit Cycles Bifurcating from an Invisible Fold–Fold in Planar Piecewise Hamiltonian SystemsBifurcationFold–fold singularityHamiltonian vector fieldLimit cyclePiecewise smooth vector fieldRegularizationThe aim of this article is twofold. Firstly, we study the existence of limit cycles in a family of piecewise smooth vector fields corresponding to an unfolding of an invisible fold–fold singularity. More precisely, given a positive integer k, we prove that this family has exactly k hyperbolic crossing limit cycles in a suitable neighborhood of this singularity. Secondly, we provide a complete study relating the existence and stability of these crossing limit cycles with the limit cycles of the family of smooth vector fields obtained by the regularization method. This relationship is obtained by studying the equivalence between the signs of the Lyapunov coefficients of the family of piecewise smooth vector fields and the ones of its regularization.Instituto de Matemática e Computação Universidade Federal de Itajubá, Avenida BPS 1303, Pinheirinho, CEP 37.500–903Instituto de Biociências Letras e Ciências Exatas UNESP, Rua Cristóvão Colombo, 2265, CEP 15054–000Instituto de Biociências Letras e Ciências Exatas UNESP, Rua Cristóvão Colombo, 2265, CEP 15054–000Universidade Federal de ItajubáUniversidade Estadual Paulista (Unesp)de Carvalho Braga, DenisFernandes da Fonseca, AlexanderGonçalves, Luiz Fernando [UNESP]Mello, Luis Fernando2020-12-12T01:17:56Z2020-12-12T01:17:56Z2020-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1007/s10883-020-09478-2Journal of Dynamical and Control Systems.1573-86981079-2724http://hdl.handle.net/11449/19862610.1007/s10883-020-09478-22-s2.0-85081560260Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Dynamical and Control Systemsinfo:eu-repo/semantics/openAccess2021-10-22T17:43:32Zoai:repositorio.unesp.br:11449/198626Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T13:57:03.621725Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Limit Cycles Bifurcating from an Invisible Fold–Fold in Planar Piecewise Hamiltonian Systems
title Limit Cycles Bifurcating from an Invisible Fold–Fold in Planar Piecewise Hamiltonian Systems
spellingShingle Limit Cycles Bifurcating from an Invisible Fold–Fold in Planar Piecewise Hamiltonian Systems
de Carvalho Braga, Denis
Bifurcation
Fold–fold singularity
Hamiltonian vector field
Limit cycle
Piecewise smooth vector field
Regularization
title_short Limit Cycles Bifurcating from an Invisible Fold–Fold in Planar Piecewise Hamiltonian Systems
title_full Limit Cycles Bifurcating from an Invisible Fold–Fold in Planar Piecewise Hamiltonian Systems
title_fullStr Limit Cycles Bifurcating from an Invisible Fold–Fold in Planar Piecewise Hamiltonian Systems
title_full_unstemmed Limit Cycles Bifurcating from an Invisible Fold–Fold in Planar Piecewise Hamiltonian Systems
title_sort Limit Cycles Bifurcating from an Invisible Fold–Fold in Planar Piecewise Hamiltonian Systems
author de Carvalho Braga, Denis
author_facet de Carvalho Braga, Denis
Fernandes da Fonseca, Alexander
Gonçalves, Luiz Fernando [UNESP]
Mello, Luis Fernando
author_role author
author2 Fernandes da Fonseca, Alexander
Gonçalves, Luiz Fernando [UNESP]
Mello, Luis Fernando
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Federal de Itajubá
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv de Carvalho Braga, Denis
Fernandes da Fonseca, Alexander
Gonçalves, Luiz Fernando [UNESP]
Mello, Luis Fernando
dc.subject.por.fl_str_mv Bifurcation
Fold–fold singularity
Hamiltonian vector field
Limit cycle
Piecewise smooth vector field
Regularization
topic Bifurcation
Fold–fold singularity
Hamiltonian vector field
Limit cycle
Piecewise smooth vector field
Regularization
description The aim of this article is twofold. Firstly, we study the existence of limit cycles in a family of piecewise smooth vector fields corresponding to an unfolding of an invisible fold–fold singularity. More precisely, given a positive integer k, we prove that this family has exactly k hyperbolic crossing limit cycles in a suitable neighborhood of this singularity. Secondly, we provide a complete study relating the existence and stability of these crossing limit cycles with the limit cycles of the family of smooth vector fields obtained by the regularization method. This relationship is obtained by studying the equivalence between the signs of the Lyapunov coefficients of the family of piecewise smooth vector fields and the ones of its regularization.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-12T01:17:56Z
2020-12-12T01:17:56Z
2020-01-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s10883-020-09478-2
Journal of Dynamical and Control Systems.
1573-8698
1079-2724
http://hdl.handle.net/11449/198626
10.1007/s10883-020-09478-2
2-s2.0-85081560260
url http://dx.doi.org/10.1007/s10883-020-09478-2
http://hdl.handle.net/11449/198626
identifier_str_mv Journal of Dynamical and Control Systems.
1573-8698
1079-2724
10.1007/s10883-020-09478-2
2-s2.0-85081560260
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Dynamical and Control Systems
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128294382469120