Effect of copper foam thickness on pool boiling heat transfer of HFE-7100
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/197705 |
Resumo: | Pool boiling is a low-cost technique for cooling electronic devices; HFE-7100 is a dielectric fluid with advantageous properties for such application but its high wettability can cause temperature overshoot in the system. Hence, the use of porous heating surfaces improves the heat transfer performance, eliminating the temperature overshoot due to their interconnected porous, which increase the wetted area and active nucleation site density. This work addressed pool boiling tests by using HFE-7100 and copper foams with three different thicknesses: 3 mm, 2 mm, and 1 mm in order to study the vapor bubble dynamics into the foam cell and find out an optimum thickness to enhance the boiling heat transfer. The results show that high thickness, 2 mm and 3 mm, has the best performance at low heat fluxes while the lowest thickness has the best performance at high heat fluxes. At heat fluxes lower than 50 kW/m², the higher surface wetted area increases the natural convection zone even though the latent heat also plays an important role. At higher heat fluxes, mainly after 200 kW/m², the vapor bubbles are trapped at the foam structure leading to an unstable boiling pattern and prevent the liquid from rewetting the surface. Therefore, the lowest foam thickness reduces the vapor trapping into the cell; additionally, the capillary-wicking ability increases and it also improves the HTC and the dryout heat flux due to the prevention of hotspots within the foam surface. |
id |
UNSP_55e8618bfa98621fc724a28764ad85db |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/197705 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Effect of copper foam thickness on pool boiling heat transfer of HFE-7100Pool boilingHFE-7100porous surfaceCopper foamthicknessPool boiling is a low-cost technique for cooling electronic devices; HFE-7100 is a dielectric fluid with advantageous properties for such application but its high wettability can cause temperature overshoot in the system. Hence, the use of porous heating surfaces improves the heat transfer performance, eliminating the temperature overshoot due to their interconnected porous, which increase the wetted area and active nucleation site density. This work addressed pool boiling tests by using HFE-7100 and copper foams with three different thicknesses: 3 mm, 2 mm, and 1 mm in order to study the vapor bubble dynamics into the foam cell and find out an optimum thickness to enhance the boiling heat transfer. The results show that high thickness, 2 mm and 3 mm, has the best performance at low heat fluxes while the lowest thickness has the best performance at high heat fluxes. At heat fluxes lower than 50 kW/m², the higher surface wetted area increases the natural convection zone even though the latent heat also plays an important role. At higher heat fluxes, mainly after 200 kW/m², the vapor bubbles are trapped at the foam structure leading to an unstable boiling pattern and prevent the liquid from rewetting the surface. Therefore, the lowest foam thickness reduces the vapor trapping into the cell; additionally, the capillary-wicking ability increases and it also improves the HTC and the dryout heat flux due to the prevention of hotspots within the foam surface.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação para a Ciência e a Tecnologia (FCT)PreprintUNESP - Universidade Estadual Paulista, Faculdade de Engenharia de Ilha Solteira, Programa de Pós-graduação em Engenharia MecânicaUlisboa - Universidade de Lisboa, Instituto Superior Técnico, Departamento de Engenharia Mecânica, IN+CNPq: 458702/2014-5FAPESP: 2013/15431-7FAPESP: 2017/13813-0FAPESP: 2019/02566-8FAPESP: 2019/15250-9ElsevierUniversidade Estadual Paulista (Unesp)Manetti, Leonardo Lachi [UNESP]Moita, Ana Sofia Oliveira HenriquesRodrigues, Reinaldo Rodrigues deCardoso, Elaine Maria [UNESP]2020-12-11T11:41:20Z2020-12-11T11:41:20Z2020-02-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdf0017-9310http://hdl.handle.net/11449/19770510.1016/j.ijheatmasstransfer.2020.119547824859887524871821157711517980960000-0001-8663-17590000-0002-3676-143XengInternational Journal of Heat and Mass Transferinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-07-04T20:06:16Zoai:repositorio.unesp.br:11449/197705Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:05:06.247983Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Effect of copper foam thickness on pool boiling heat transfer of HFE-7100 |
title |
Effect of copper foam thickness on pool boiling heat transfer of HFE-7100 |
spellingShingle |
Effect of copper foam thickness on pool boiling heat transfer of HFE-7100 Manetti, Leonardo Lachi [UNESP] Pool boiling HFE-7100 porous surface Copper foam thickness |
title_short |
Effect of copper foam thickness on pool boiling heat transfer of HFE-7100 |
title_full |
Effect of copper foam thickness on pool boiling heat transfer of HFE-7100 |
title_fullStr |
Effect of copper foam thickness on pool boiling heat transfer of HFE-7100 |
title_full_unstemmed |
Effect of copper foam thickness on pool boiling heat transfer of HFE-7100 |
title_sort |
Effect of copper foam thickness on pool boiling heat transfer of HFE-7100 |
author |
Manetti, Leonardo Lachi [UNESP] |
author_facet |
Manetti, Leonardo Lachi [UNESP] Moita, Ana Sofia Oliveira Henriques Rodrigues, Reinaldo Rodrigues de Cardoso, Elaine Maria [UNESP] |
author_role |
author |
author2 |
Moita, Ana Sofia Oliveira Henriques Rodrigues, Reinaldo Rodrigues de Cardoso, Elaine Maria [UNESP] |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Manetti, Leonardo Lachi [UNESP] Moita, Ana Sofia Oliveira Henriques Rodrigues, Reinaldo Rodrigues de Cardoso, Elaine Maria [UNESP] |
dc.subject.por.fl_str_mv |
Pool boiling HFE-7100 porous surface Copper foam thickness |
topic |
Pool boiling HFE-7100 porous surface Copper foam thickness |
description |
Pool boiling is a low-cost technique for cooling electronic devices; HFE-7100 is a dielectric fluid with advantageous properties for such application but its high wettability can cause temperature overshoot in the system. Hence, the use of porous heating surfaces improves the heat transfer performance, eliminating the temperature overshoot due to their interconnected porous, which increase the wetted area and active nucleation site density. This work addressed pool boiling tests by using HFE-7100 and copper foams with three different thicknesses: 3 mm, 2 mm, and 1 mm in order to study the vapor bubble dynamics into the foam cell and find out an optimum thickness to enhance the boiling heat transfer. The results show that high thickness, 2 mm and 3 mm, has the best performance at low heat fluxes while the lowest thickness has the best performance at high heat fluxes. At heat fluxes lower than 50 kW/m², the higher surface wetted area increases the natural convection zone even though the latent heat also plays an important role. At higher heat fluxes, mainly after 200 kW/m², the vapor bubbles are trapped at the foam structure leading to an unstable boiling pattern and prevent the liquid from rewetting the surface. Therefore, the lowest foam thickness reduces the vapor trapping into the cell; additionally, the capillary-wicking ability increases and it also improves the HTC and the dryout heat flux due to the prevention of hotspots within the foam surface. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-11T11:41:20Z 2020-12-11T11:41:20Z 2020-02-24 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
0017-9310 http://hdl.handle.net/11449/197705 10.1016/j.ijheatmasstransfer.2020.119547 8248598875248718 2115771151798096 0000-0001-8663-1759 0000-0002-3676-143X |
identifier_str_mv |
0017-9310 10.1016/j.ijheatmasstransfer.2020.119547 8248598875248718 2115771151798096 0000-0001-8663-1759 0000-0002-3676-143X |
url |
http://hdl.handle.net/11449/197705 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
International Journal of Heat and Mass Transfer |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129281790836736 |