Ultra-structural mapping of sugarcane bagasse after oxalic acid fiber expansion (OAFEX) and ethanol production by Candida shehatae and Saccharomyces cerevisiae

Detalhes bibliográficos
Autor(a) principal: Chandel, Anuj K.
Data de Publicação: 2013
Outros Autores: Antunes, Felipe F. A., Anjos, Virgilio, Bell, Maria J. V., Rodrigues, Leonarde N., Singh, Om V., Rosa, Carlos A., Pagnocca, Fernando C. [UNESP], Da Silva, Silvio S.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1186/1754-6834-6-4
http://hdl.handle.net/11449/74393
Resumo: Background: Diminishing supplies of fossil fuels and oil spills are rousing to explore the alternative sources of energy that can be produced from non-food/feed-based substrates. Due to its abundance, sugarcane bagasse (SB) could be a model substrate for the second-generation biofuel cellulosic ethanol. However, the efficient bioconversion of SB remains a challenge for the commercial production of cellulosic ethanol. We hypothesized that oxalic-acid-mediated thermochemical pretreatment (OAFEX) would overcome the native recalcitrance of SB by enhancing the cellulase amenability toward the embedded cellulosic microfibrils. Results: OAFEX treatment revealed the solubilization of hemicellulose releasing sugars (12.56 g/l xylose and 1.85 g/l glucose), leaving cellulignin in an accessible form for enzymatic hydrolysis. The highest hydrolytic efficiency (66.51%) of cellulignin was achieved by enzymatic hydrolysis (Celluclast 1.5 L and Novozym 188). The ultrastructure characterization of SB using scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy, Fourier transform-near infrared spectroscopy (FT-NIR), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) revealed structural differences before and after OAFEX treatment with enzymatic hydrolysis. Furthermore, fermentation mediated by C. shehatae UFMG HM52.2 and S. cerevisiae 174 showed fuel ethanol production from detoxified acid (3.2 g/l, yield 0.353 g/g; 0.52 g/l, yield, 0.246 g/g) and enzymatic hydrolysates (4.83 g/l, yield, 0.28 g/g; 6.6 g/l, yield 0.46 g/g). Conclusions: OAFEX treatment revealed marked hemicellulose degradation, improving the cellulases ability to access the cellulignin and release fermentable sugars from the pretreated substrate. The ultrastructure of SB after OAFEX and enzymatic hydrolysis of cellulignin established thorough insights at the molecular level. © 2013 Chandel et al; licensee BioMed Central Ltd.
id UNSP_580298eb49e207cbd5de981073a1201c
oai_identifier_str oai:repositorio.unesp.br:11449/74393
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Ultra-structural mapping of sugarcane bagasse after oxalic acid fiber expansion (OAFEX) and ethanol production by Candida shehatae and Saccharomyces cerevisiaeAlternative sources of energyCommercial productionsEnzymatic hydrolysatesEthanol productionFermentable sugarsHemicellulose degradationStructural differencesThermochemical pretreatmentAtomic force microscopyBagasseCelluloseCellulosic ethanolEnzymatic hydrolysisFourier transform infrared spectroscopyNear infrared spectroscopyOil spillsOils and fatsOrganic acidsOxalic acidRaman spectroscopyScanning electron microscopySubstratesSugarsX ray diffractionYeastalternative energyenzyme activityethanolfermentationhydrolysisoxalic acidOrganic AcidsOxalic AcidRaman SpectroscopyScanning Electron MicroscopyX Ray DiffractionYeastsCandida shehataeSaccharomyces cerevisiaeBackground: Diminishing supplies of fossil fuels and oil spills are rousing to explore the alternative sources of energy that can be produced from non-food/feed-based substrates. Due to its abundance, sugarcane bagasse (SB) could be a model substrate for the second-generation biofuel cellulosic ethanol. However, the efficient bioconversion of SB remains a challenge for the commercial production of cellulosic ethanol. We hypothesized that oxalic-acid-mediated thermochemical pretreatment (OAFEX) would overcome the native recalcitrance of SB by enhancing the cellulase amenability toward the embedded cellulosic microfibrils. Results: OAFEX treatment revealed the solubilization of hemicellulose releasing sugars (12.56 g/l xylose and 1.85 g/l glucose), leaving cellulignin in an accessible form for enzymatic hydrolysis. The highest hydrolytic efficiency (66.51%) of cellulignin was achieved by enzymatic hydrolysis (Celluclast 1.5 L and Novozym 188). The ultrastructure characterization of SB using scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy, Fourier transform-near infrared spectroscopy (FT-NIR), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) revealed structural differences before and after OAFEX treatment with enzymatic hydrolysis. Furthermore, fermentation mediated by C. shehatae UFMG HM52.2 and S. cerevisiae 174 showed fuel ethanol production from detoxified acid (3.2 g/l, yield 0.353 g/g; 0.52 g/l, yield, 0.246 g/g) and enzymatic hydrolysates (4.83 g/l, yield, 0.28 g/g; 6.6 g/l, yield 0.46 g/g). Conclusions: OAFEX treatment revealed marked hemicellulose degradation, improving the cellulases ability to access the cellulignin and release fermentable sugars from the pretreated substrate. The ultrastructure of SB after OAFEX and enzymatic hydrolysis of cellulignin established thorough insights at the molecular level. © 2013 Chandel et al; licensee BioMed Central Ltd.Department of Biotechnology University of São Paulo School of Engineering of Lorena, Estrada Municipal do Campinho, Caixa Postal 116 12.602.810, Lorena/SPMaterial Spectroscopy Laboratory Department of Physics Federal University of Juiz de Fora, 36036-330, Juiz de Fora, MGDivision of Biological and Health Sciences University of Pittsburgh, 16701, Bradford, PADepartment of Microbiology Federal University of Minas Gerais, Belo Horizonte, MGDepartment of Biochemistry and Microbiology Institute of Biosciences CEIS/UNESP, Rio Claro/SPDepartment of Biochemistry and Microbiology Institute of Biosciences CEIS/UNESP, Rio Claro/SPUniversidade de São Paulo (USP)Federal University of Juiz de ForaUniversity of PittsburghUniversidade Federal de Minas Gerais (UFMG)Universidade Estadual Paulista (Unesp)Chandel, Anuj K.Antunes, Felipe F. A.Anjos, VirgilioBell, Maria J. V.Rodrigues, Leonarde N.Singh, Om V.Rosa, Carlos A.Pagnocca, Fernando C. [UNESP]Da Silva, Silvio S.2014-05-27T11:28:11Z2014-05-27T11:28:11Z2013-01-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://dx.doi.org/10.1186/1754-6834-6-4Biotechnology for Biofuels, v. 6, n. 1, 2013.1754-6834http://hdl.handle.net/11449/7439310.1186/1754-6834-6-4WOS:0003161767000012-s2.0-848721944012-s2.0-84872194401.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengBiotechnology for Biofuels5.4971,899info:eu-repo/semantics/openAccess2023-11-27T06:11:34Zoai:repositorio.unesp.br:11449/74393Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:50:07.110623Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Ultra-structural mapping of sugarcane bagasse after oxalic acid fiber expansion (OAFEX) and ethanol production by Candida shehatae and Saccharomyces cerevisiae
title Ultra-structural mapping of sugarcane bagasse after oxalic acid fiber expansion (OAFEX) and ethanol production by Candida shehatae and Saccharomyces cerevisiae
spellingShingle Ultra-structural mapping of sugarcane bagasse after oxalic acid fiber expansion (OAFEX) and ethanol production by Candida shehatae and Saccharomyces cerevisiae
Chandel, Anuj K.
Alternative sources of energy
Commercial productions
Enzymatic hydrolysates
Ethanol production
Fermentable sugars
Hemicellulose degradation
Structural differences
Thermochemical pretreatment
Atomic force microscopy
Bagasse
Cellulose
Cellulosic ethanol
Enzymatic hydrolysis
Fourier transform infrared spectroscopy
Near infrared spectroscopy
Oil spills
Oils and fats
Organic acids
Oxalic acid
Raman spectroscopy
Scanning electron microscopy
Substrates
Sugars
X ray diffraction
Yeast
alternative energy
enzyme activity
ethanol
fermentation
hydrolysis
oxalic acid
Organic Acids
Oxalic Acid
Raman Spectroscopy
Scanning Electron Microscopy
X Ray Diffraction
Yeasts
Candida shehatae
Saccharomyces cerevisiae
title_short Ultra-structural mapping of sugarcane bagasse after oxalic acid fiber expansion (OAFEX) and ethanol production by Candida shehatae and Saccharomyces cerevisiae
title_full Ultra-structural mapping of sugarcane bagasse after oxalic acid fiber expansion (OAFEX) and ethanol production by Candida shehatae and Saccharomyces cerevisiae
title_fullStr Ultra-structural mapping of sugarcane bagasse after oxalic acid fiber expansion (OAFEX) and ethanol production by Candida shehatae and Saccharomyces cerevisiae
title_full_unstemmed Ultra-structural mapping of sugarcane bagasse after oxalic acid fiber expansion (OAFEX) and ethanol production by Candida shehatae and Saccharomyces cerevisiae
title_sort Ultra-structural mapping of sugarcane bagasse after oxalic acid fiber expansion (OAFEX) and ethanol production by Candida shehatae and Saccharomyces cerevisiae
author Chandel, Anuj K.
author_facet Chandel, Anuj K.
Antunes, Felipe F. A.
Anjos, Virgilio
Bell, Maria J. V.
Rodrigues, Leonarde N.
Singh, Om V.
Rosa, Carlos A.
Pagnocca, Fernando C. [UNESP]
Da Silva, Silvio S.
author_role author
author2 Antunes, Felipe F. A.
Anjos, Virgilio
Bell, Maria J. V.
Rodrigues, Leonarde N.
Singh, Om V.
Rosa, Carlos A.
Pagnocca, Fernando C. [UNESP]
Da Silva, Silvio S.
author2_role author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade de São Paulo (USP)
Federal University of Juiz de Fora
University of Pittsburgh
Universidade Federal de Minas Gerais (UFMG)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Chandel, Anuj K.
Antunes, Felipe F. A.
Anjos, Virgilio
Bell, Maria J. V.
Rodrigues, Leonarde N.
Singh, Om V.
Rosa, Carlos A.
Pagnocca, Fernando C. [UNESP]
Da Silva, Silvio S.
dc.subject.por.fl_str_mv Alternative sources of energy
Commercial productions
Enzymatic hydrolysates
Ethanol production
Fermentable sugars
Hemicellulose degradation
Structural differences
Thermochemical pretreatment
Atomic force microscopy
Bagasse
Cellulose
Cellulosic ethanol
Enzymatic hydrolysis
Fourier transform infrared spectroscopy
Near infrared spectroscopy
Oil spills
Oils and fats
Organic acids
Oxalic acid
Raman spectroscopy
Scanning electron microscopy
Substrates
Sugars
X ray diffraction
Yeast
alternative energy
enzyme activity
ethanol
fermentation
hydrolysis
oxalic acid
Organic Acids
Oxalic Acid
Raman Spectroscopy
Scanning Electron Microscopy
X Ray Diffraction
Yeasts
Candida shehatae
Saccharomyces cerevisiae
topic Alternative sources of energy
Commercial productions
Enzymatic hydrolysates
Ethanol production
Fermentable sugars
Hemicellulose degradation
Structural differences
Thermochemical pretreatment
Atomic force microscopy
Bagasse
Cellulose
Cellulosic ethanol
Enzymatic hydrolysis
Fourier transform infrared spectroscopy
Near infrared spectroscopy
Oil spills
Oils and fats
Organic acids
Oxalic acid
Raman spectroscopy
Scanning electron microscopy
Substrates
Sugars
X ray diffraction
Yeast
alternative energy
enzyme activity
ethanol
fermentation
hydrolysis
oxalic acid
Organic Acids
Oxalic Acid
Raman Spectroscopy
Scanning Electron Microscopy
X Ray Diffraction
Yeasts
Candida shehatae
Saccharomyces cerevisiae
description Background: Diminishing supplies of fossil fuels and oil spills are rousing to explore the alternative sources of energy that can be produced from non-food/feed-based substrates. Due to its abundance, sugarcane bagasse (SB) could be a model substrate for the second-generation biofuel cellulosic ethanol. However, the efficient bioconversion of SB remains a challenge for the commercial production of cellulosic ethanol. We hypothesized that oxalic-acid-mediated thermochemical pretreatment (OAFEX) would overcome the native recalcitrance of SB by enhancing the cellulase amenability toward the embedded cellulosic microfibrils. Results: OAFEX treatment revealed the solubilization of hemicellulose releasing sugars (12.56 g/l xylose and 1.85 g/l glucose), leaving cellulignin in an accessible form for enzymatic hydrolysis. The highest hydrolytic efficiency (66.51%) of cellulignin was achieved by enzymatic hydrolysis (Celluclast 1.5 L and Novozym 188). The ultrastructure characterization of SB using scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy, Fourier transform-near infrared spectroscopy (FT-NIR), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) revealed structural differences before and after OAFEX treatment with enzymatic hydrolysis. Furthermore, fermentation mediated by C. shehatae UFMG HM52.2 and S. cerevisiae 174 showed fuel ethanol production from detoxified acid (3.2 g/l, yield 0.353 g/g; 0.52 g/l, yield, 0.246 g/g) and enzymatic hydrolysates (4.83 g/l, yield, 0.28 g/g; 6.6 g/l, yield 0.46 g/g). Conclusions: OAFEX treatment revealed marked hemicellulose degradation, improving the cellulases ability to access the cellulignin and release fermentable sugars from the pretreated substrate. The ultrastructure of SB after OAFEX and enzymatic hydrolysis of cellulignin established thorough insights at the molecular level. © 2013 Chandel et al; licensee BioMed Central Ltd.
publishDate 2013
dc.date.none.fl_str_mv 2013-01-17
2014-05-27T11:28:11Z
2014-05-27T11:28:11Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1186/1754-6834-6-4
Biotechnology for Biofuels, v. 6, n. 1, 2013.
1754-6834
http://hdl.handle.net/11449/74393
10.1186/1754-6834-6-4
WOS:000316176700001
2-s2.0-84872194401
2-s2.0-84872194401.pdf
url http://dx.doi.org/10.1186/1754-6834-6-4
http://hdl.handle.net/11449/74393
identifier_str_mv Biotechnology for Biofuels, v. 6, n. 1, 2013.
1754-6834
10.1186/1754-6834-6-4
WOS:000316176700001
2-s2.0-84872194401
2-s2.0-84872194401.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Biotechnology for Biofuels
5.497
1,899
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128987489107968