Ultra-structural mapping of sugarcane bagasse after oxalic acid fiber expansion (OAFEX) and ethanol production by Candida shehatae and Saccharomyces cerevisiae
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1186/1754-6834-6-4 http://hdl.handle.net/11449/74393 |
Resumo: | Background: Diminishing supplies of fossil fuels and oil spills are rousing to explore the alternative sources of energy that can be produced from non-food/feed-based substrates. Due to its abundance, sugarcane bagasse (SB) could be a model substrate for the second-generation biofuel cellulosic ethanol. However, the efficient bioconversion of SB remains a challenge for the commercial production of cellulosic ethanol. We hypothesized that oxalic-acid-mediated thermochemical pretreatment (OAFEX) would overcome the native recalcitrance of SB by enhancing the cellulase amenability toward the embedded cellulosic microfibrils. Results: OAFEX treatment revealed the solubilization of hemicellulose releasing sugars (12.56 g/l xylose and 1.85 g/l glucose), leaving cellulignin in an accessible form for enzymatic hydrolysis. The highest hydrolytic efficiency (66.51%) of cellulignin was achieved by enzymatic hydrolysis (Celluclast 1.5 L and Novozym 188). The ultrastructure characterization of SB using scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy, Fourier transform-near infrared spectroscopy (FT-NIR), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) revealed structural differences before and after OAFEX treatment with enzymatic hydrolysis. Furthermore, fermentation mediated by C. shehatae UFMG HM52.2 and S. cerevisiae 174 showed fuel ethanol production from detoxified acid (3.2 g/l, yield 0.353 g/g; 0.52 g/l, yield, 0.246 g/g) and enzymatic hydrolysates (4.83 g/l, yield, 0.28 g/g; 6.6 g/l, yield 0.46 g/g). Conclusions: OAFEX treatment revealed marked hemicellulose degradation, improving the cellulases ability to access the cellulignin and release fermentable sugars from the pretreated substrate. The ultrastructure of SB after OAFEX and enzymatic hydrolysis of cellulignin established thorough insights at the molecular level. © 2013 Chandel et al; licensee BioMed Central Ltd. |
id |
UNSP_580298eb49e207cbd5de981073a1201c |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/74393 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Ultra-structural mapping of sugarcane bagasse after oxalic acid fiber expansion (OAFEX) and ethanol production by Candida shehatae and Saccharomyces cerevisiaeAlternative sources of energyCommercial productionsEnzymatic hydrolysatesEthanol productionFermentable sugarsHemicellulose degradationStructural differencesThermochemical pretreatmentAtomic force microscopyBagasseCelluloseCellulosic ethanolEnzymatic hydrolysisFourier transform infrared spectroscopyNear infrared spectroscopyOil spillsOils and fatsOrganic acidsOxalic acidRaman spectroscopyScanning electron microscopySubstratesSugarsX ray diffractionYeastalternative energyenzyme activityethanolfermentationhydrolysisoxalic acidOrganic AcidsOxalic AcidRaman SpectroscopyScanning Electron MicroscopyX Ray DiffractionYeastsCandida shehataeSaccharomyces cerevisiaeBackground: Diminishing supplies of fossil fuels and oil spills are rousing to explore the alternative sources of energy that can be produced from non-food/feed-based substrates. Due to its abundance, sugarcane bagasse (SB) could be a model substrate for the second-generation biofuel cellulosic ethanol. However, the efficient bioconversion of SB remains a challenge for the commercial production of cellulosic ethanol. We hypothesized that oxalic-acid-mediated thermochemical pretreatment (OAFEX) would overcome the native recalcitrance of SB by enhancing the cellulase amenability toward the embedded cellulosic microfibrils. Results: OAFEX treatment revealed the solubilization of hemicellulose releasing sugars (12.56 g/l xylose and 1.85 g/l glucose), leaving cellulignin in an accessible form for enzymatic hydrolysis. The highest hydrolytic efficiency (66.51%) of cellulignin was achieved by enzymatic hydrolysis (Celluclast 1.5 L and Novozym 188). The ultrastructure characterization of SB using scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy, Fourier transform-near infrared spectroscopy (FT-NIR), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) revealed structural differences before and after OAFEX treatment with enzymatic hydrolysis. Furthermore, fermentation mediated by C. shehatae UFMG HM52.2 and S. cerevisiae 174 showed fuel ethanol production from detoxified acid (3.2 g/l, yield 0.353 g/g; 0.52 g/l, yield, 0.246 g/g) and enzymatic hydrolysates (4.83 g/l, yield, 0.28 g/g; 6.6 g/l, yield 0.46 g/g). Conclusions: OAFEX treatment revealed marked hemicellulose degradation, improving the cellulases ability to access the cellulignin and release fermentable sugars from the pretreated substrate. The ultrastructure of SB after OAFEX and enzymatic hydrolysis of cellulignin established thorough insights at the molecular level. © 2013 Chandel et al; licensee BioMed Central Ltd.Department of Biotechnology University of São Paulo School of Engineering of Lorena, Estrada Municipal do Campinho, Caixa Postal 116 12.602.810, Lorena/SPMaterial Spectroscopy Laboratory Department of Physics Federal University of Juiz de Fora, 36036-330, Juiz de Fora, MGDivision of Biological and Health Sciences University of Pittsburgh, 16701, Bradford, PADepartment of Microbiology Federal University of Minas Gerais, Belo Horizonte, MGDepartment of Biochemistry and Microbiology Institute of Biosciences CEIS/UNESP, Rio Claro/SPDepartment of Biochemistry and Microbiology Institute of Biosciences CEIS/UNESP, Rio Claro/SPUniversidade de São Paulo (USP)Federal University of Juiz de ForaUniversity of PittsburghUniversidade Federal de Minas Gerais (UFMG)Universidade Estadual Paulista (Unesp)Chandel, Anuj K.Antunes, Felipe F. A.Anjos, VirgilioBell, Maria J. V.Rodrigues, Leonarde N.Singh, Om V.Rosa, Carlos A.Pagnocca, Fernando C. [UNESP]Da Silva, Silvio S.2014-05-27T11:28:11Z2014-05-27T11:28:11Z2013-01-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://dx.doi.org/10.1186/1754-6834-6-4Biotechnology for Biofuels, v. 6, n. 1, 2013.1754-6834http://hdl.handle.net/11449/7439310.1186/1754-6834-6-4WOS:0003161767000012-s2.0-848721944012-s2.0-84872194401.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengBiotechnology for Biofuels5.4971,899info:eu-repo/semantics/openAccess2023-11-27T06:11:34Zoai:repositorio.unesp.br:11449/74393Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:50:07.110623Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Ultra-structural mapping of sugarcane bagasse after oxalic acid fiber expansion (OAFEX) and ethanol production by Candida shehatae and Saccharomyces cerevisiae |
title |
Ultra-structural mapping of sugarcane bagasse after oxalic acid fiber expansion (OAFEX) and ethanol production by Candida shehatae and Saccharomyces cerevisiae |
spellingShingle |
Ultra-structural mapping of sugarcane bagasse after oxalic acid fiber expansion (OAFEX) and ethanol production by Candida shehatae and Saccharomyces cerevisiae Chandel, Anuj K. Alternative sources of energy Commercial productions Enzymatic hydrolysates Ethanol production Fermentable sugars Hemicellulose degradation Structural differences Thermochemical pretreatment Atomic force microscopy Bagasse Cellulose Cellulosic ethanol Enzymatic hydrolysis Fourier transform infrared spectroscopy Near infrared spectroscopy Oil spills Oils and fats Organic acids Oxalic acid Raman spectroscopy Scanning electron microscopy Substrates Sugars X ray diffraction Yeast alternative energy enzyme activity ethanol fermentation hydrolysis oxalic acid Organic Acids Oxalic Acid Raman Spectroscopy Scanning Electron Microscopy X Ray Diffraction Yeasts Candida shehatae Saccharomyces cerevisiae |
title_short |
Ultra-structural mapping of sugarcane bagasse after oxalic acid fiber expansion (OAFEX) and ethanol production by Candida shehatae and Saccharomyces cerevisiae |
title_full |
Ultra-structural mapping of sugarcane bagasse after oxalic acid fiber expansion (OAFEX) and ethanol production by Candida shehatae and Saccharomyces cerevisiae |
title_fullStr |
Ultra-structural mapping of sugarcane bagasse after oxalic acid fiber expansion (OAFEX) and ethanol production by Candida shehatae and Saccharomyces cerevisiae |
title_full_unstemmed |
Ultra-structural mapping of sugarcane bagasse after oxalic acid fiber expansion (OAFEX) and ethanol production by Candida shehatae and Saccharomyces cerevisiae |
title_sort |
Ultra-structural mapping of sugarcane bagasse after oxalic acid fiber expansion (OAFEX) and ethanol production by Candida shehatae and Saccharomyces cerevisiae |
author |
Chandel, Anuj K. |
author_facet |
Chandel, Anuj K. Antunes, Felipe F. A. Anjos, Virgilio Bell, Maria J. V. Rodrigues, Leonarde N. Singh, Om V. Rosa, Carlos A. Pagnocca, Fernando C. [UNESP] Da Silva, Silvio S. |
author_role |
author |
author2 |
Antunes, Felipe F. A. Anjos, Virgilio Bell, Maria J. V. Rodrigues, Leonarde N. Singh, Om V. Rosa, Carlos A. Pagnocca, Fernando C. [UNESP] Da Silva, Silvio S. |
author2_role |
author author author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade de São Paulo (USP) Federal University of Juiz de Fora University of Pittsburgh Universidade Federal de Minas Gerais (UFMG) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Chandel, Anuj K. Antunes, Felipe F. A. Anjos, Virgilio Bell, Maria J. V. Rodrigues, Leonarde N. Singh, Om V. Rosa, Carlos A. Pagnocca, Fernando C. [UNESP] Da Silva, Silvio S. |
dc.subject.por.fl_str_mv |
Alternative sources of energy Commercial productions Enzymatic hydrolysates Ethanol production Fermentable sugars Hemicellulose degradation Structural differences Thermochemical pretreatment Atomic force microscopy Bagasse Cellulose Cellulosic ethanol Enzymatic hydrolysis Fourier transform infrared spectroscopy Near infrared spectroscopy Oil spills Oils and fats Organic acids Oxalic acid Raman spectroscopy Scanning electron microscopy Substrates Sugars X ray diffraction Yeast alternative energy enzyme activity ethanol fermentation hydrolysis oxalic acid Organic Acids Oxalic Acid Raman Spectroscopy Scanning Electron Microscopy X Ray Diffraction Yeasts Candida shehatae Saccharomyces cerevisiae |
topic |
Alternative sources of energy Commercial productions Enzymatic hydrolysates Ethanol production Fermentable sugars Hemicellulose degradation Structural differences Thermochemical pretreatment Atomic force microscopy Bagasse Cellulose Cellulosic ethanol Enzymatic hydrolysis Fourier transform infrared spectroscopy Near infrared spectroscopy Oil spills Oils and fats Organic acids Oxalic acid Raman spectroscopy Scanning electron microscopy Substrates Sugars X ray diffraction Yeast alternative energy enzyme activity ethanol fermentation hydrolysis oxalic acid Organic Acids Oxalic Acid Raman Spectroscopy Scanning Electron Microscopy X Ray Diffraction Yeasts Candida shehatae Saccharomyces cerevisiae |
description |
Background: Diminishing supplies of fossil fuels and oil spills are rousing to explore the alternative sources of energy that can be produced from non-food/feed-based substrates. Due to its abundance, sugarcane bagasse (SB) could be a model substrate for the second-generation biofuel cellulosic ethanol. However, the efficient bioconversion of SB remains a challenge for the commercial production of cellulosic ethanol. We hypothesized that oxalic-acid-mediated thermochemical pretreatment (OAFEX) would overcome the native recalcitrance of SB by enhancing the cellulase amenability toward the embedded cellulosic microfibrils. Results: OAFEX treatment revealed the solubilization of hemicellulose releasing sugars (12.56 g/l xylose and 1.85 g/l glucose), leaving cellulignin in an accessible form for enzymatic hydrolysis. The highest hydrolytic efficiency (66.51%) of cellulignin was achieved by enzymatic hydrolysis (Celluclast 1.5 L and Novozym 188). The ultrastructure characterization of SB using scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy, Fourier transform-near infrared spectroscopy (FT-NIR), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) revealed structural differences before and after OAFEX treatment with enzymatic hydrolysis. Furthermore, fermentation mediated by C. shehatae UFMG HM52.2 and S. cerevisiae 174 showed fuel ethanol production from detoxified acid (3.2 g/l, yield 0.353 g/g; 0.52 g/l, yield, 0.246 g/g) and enzymatic hydrolysates (4.83 g/l, yield, 0.28 g/g; 6.6 g/l, yield 0.46 g/g). Conclusions: OAFEX treatment revealed marked hemicellulose degradation, improving the cellulases ability to access the cellulignin and release fermentable sugars from the pretreated substrate. The ultrastructure of SB after OAFEX and enzymatic hydrolysis of cellulignin established thorough insights at the molecular level. © 2013 Chandel et al; licensee BioMed Central Ltd. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-01-17 2014-05-27T11:28:11Z 2014-05-27T11:28:11Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1186/1754-6834-6-4 Biotechnology for Biofuels, v. 6, n. 1, 2013. 1754-6834 http://hdl.handle.net/11449/74393 10.1186/1754-6834-6-4 WOS:000316176700001 2-s2.0-84872194401 2-s2.0-84872194401.pdf |
url |
http://dx.doi.org/10.1186/1754-6834-6-4 http://hdl.handle.net/11449/74393 |
identifier_str_mv |
Biotechnology for Biofuels, v. 6, n. 1, 2013. 1754-6834 10.1186/1754-6834-6-4 WOS:000316176700001 2-s2.0-84872194401 2-s2.0-84872194401.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Biotechnology for Biofuels 5.497 1,899 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128987489107968 |