Extending the scope of pooled analyses of individual patient biomarker data from heterogeneous laboratory platforms and cohorts using merging algorithms

Detalhes bibliográficos
Autor(a) principal: Burke, Orlaith
Data de Publicação: 2016
Outros Autores: Benton, Samantha, Szafranski, Pawel, von Dadelszen, Peter, Buhimschi, S. Catalin, Cetin, Irene, Chappell, Lucy, Figueras, Francesc, Galindo, Alberto, Herraiz, Ignacio, Holzman, Claudia, Hubel, Carl, Knudsen, Ulla, Kronborg, Camilla, Laivuori, Hannele, Lapaire, Olav, McElrath, Thomas, Moertl, Manfred, Myers, Jenny, Ness, Roberta B., Oliveira, Leandro [UNESP], Olson, Gayle, Poston, Lucilla, Ris-Stalpers, Carrie, Roberts, James M., Schalekamp-Timmermans, Sarah, Schlembach, Dietmar, Steegers, Eric, Stepan, Holger, Tsatsaris, Vassilis, van der Post, Joris A., Verlohren, Stefan, Villa, Pia M., Williams, David, Zeisler, Harald, Redman, Christopher W. G., Staff, Anne Cathrine, Global Pregnancy Collaboration
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.preghy.2015.12.002
http://hdl.handle.net/11449/161344
Resumo: Background: A common challenge in medicine, exemplified in the analysis of biomarker data, is that large studies are needed for sufficient statistical power. Often, this may only be achievable by aggregating multiple cohorts. However, different studies may use disparate platforms for laboratory analysis, which can hinder merging. Methods: Using circulating placental growth factor (PIGF), a potential biomarker for hypertensive disorders of pregnancy (HDP) such as preeclampsia, as an example, we investigated how such issues can be overcome by inter-platform standardization and merging algorithms. We studied 16,462 pregnancies from 22 study cohorts. PIGF measurements (gestational age >= 20 weeks) analyzed on one of four platforms: R & Systems, Alere (R) Triage, Roche (R) Elecsys or Abbott (R) Architect, were available for 13,429 women. Two merging algorithms, using Z-Score and Multiple of Median transformations, were applied. Results: Best reference curves (BRC), based on merged, transformed PIGF measurements in uncomplicated pregnancy across six gestational age groups, were estimated. Identification of HDP by these PIGF-BRCS was compared to that of platform-specific curves. Conclusions: We demonstrate the feasibility of merging PIGF concentrations from different analytical platforms. Overall BRC identification of HDP performed at least as well as platform-specific curves. Our method can be extended to any set of biomarkers obtained from different laboratory platforms in any field. Merged biomarker data from multiple studies will improve statistical power and enlarge our understanding of the pathophysiology and management of medical syndromes. (C) 2015 International Society for the Study of Hypertension in Pregnancy. Published by Elsevier B.V. All rights reserved.
id UNSP_593039b9ae3fa383ea1650e483bb2738
oai_identifier_str oai:repositorio.unesp.br:11449/161344
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Extending the scope of pooled analyses of individual patient biomarker data from heterogeneous laboratory platforms and cohorts using merging algorithmsMerging algorithmsIndividual patient dataBest reference curvePooled analysisBiomarker dataPre-eclampsiaBackground: A common challenge in medicine, exemplified in the analysis of biomarker data, is that large studies are needed for sufficient statistical power. Often, this may only be achievable by aggregating multiple cohorts. However, different studies may use disparate platforms for laboratory analysis, which can hinder merging. Methods: Using circulating placental growth factor (PIGF), a potential biomarker for hypertensive disorders of pregnancy (HDP) such as preeclampsia, as an example, we investigated how such issues can be overcome by inter-platform standardization and merging algorithms. We studied 16,462 pregnancies from 22 study cohorts. PIGF measurements (gestational age >= 20 weeks) analyzed on one of four platforms: R & Systems, Alere (R) Triage, Roche (R) Elecsys or Abbott (R) Architect, were available for 13,429 women. Two merging algorithms, using Z-Score and Multiple of Median transformations, were applied. Results: Best reference curves (BRC), based on merged, transformed PIGF measurements in uncomplicated pregnancy across six gestational age groups, were estimated. Identification of HDP by these PIGF-BRCS was compared to that of platform-specific curves. Conclusions: We demonstrate the feasibility of merging PIGF concentrations from different analytical platforms. Overall BRC identification of HDP performed at least as well as platform-specific curves. Our method can be extended to any set of biomarkers obtained from different laboratory platforms in any field. Merged biomarker data from multiple studies will improve statistical power and enlarge our understanding of the pathophysiology and management of medical syndromes. (C) 2015 International Society for the Study of Hypertension in Pregnancy. Published by Elsevier B.V. All rights reserved.Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthNational Institute for Health ResearchUniv Oxford, Nuffield Dept Populat Hlth, Old Rd Campus, Oxford OX3 7LF, EnglandUniv British Columbia, Dept Obstet & Gynaecol, Vancouver, BC V5Z 1M9, CanadaUniv British Columbia, Child & Family Res Inst, Vancouver, BC V5Z 1M9, CanadaUniv Oxford, Nuffield Dept Obstet & Gynaecol, Oxford, EnglandYale Univ, New Haven, CT USAUniv Milan, I-20122 Milan, ItalyKings Coll London, Womens Hlth Acad Ctr, London WC2R 2LS, EnglandUniv Barcelona, Hosp Clin, Barcelona, SpainHosp Univ 12 Octubre, Dept Obstet & Gynecol, Fetal Med Unit, Madrid, SpainUniv Complutense, E-28040 Madrid, SpainMichigan State Univ, E Lansing, MI 48824 USAUniv Pittsburgh, Magee Womens Res Inst, Pittsburgh, PA USAAarhus Univ Hosp, Dept Obstet & Gynecol, DK-8000 Aarhus, DenmarkAarhus Univ, Aarhus, DenmarkAarhus Univ Hosp, Dept Oncol, DK-8000 Aarhus, DenmarkUniv Helsinki, Med Genet Obstet & Gynaecol, Helsinki, FinlandUniv Helsinki, Inst Mol Med Finland, Helsinki, FinlandHelsinki Univ Hosp, Helsinki, FinlandUniv Basel, Basel, SwitzerlandHarvard Univ, Brigham & Womens Hosp, Sch Med, Boston, MA 02115 USAKlagenfurt & Med Univ, Interdisciplinary Ctr Gynecol Gynecooncol & Fetom, Graz, AustriaSt Marys Hosp, Maternal & Fetal Hlth Res Ctr, Manchester M13 0JH, Lancs, EnglandUniv Manchester, Manchester, Lancs, EnglandUniv Texas Houston, Sch Publ Hlth, Houston, TX USAUniv Estadual Paulista, Dept Obstet, Botucatu, SP, BrazilUniv Texas Med Branch, Galveston, TX 77555 USAUniv Amsterdam, Acad Med Ctr, Dept Obstet & Gynaecol, Meibergdreef 9, NL-1105 AZ Amsterdam, NetherlandsErasmus MC, Rotterdam, NetherlandsUniv Jena, D-07745 Jena, GermanyUniv Leipzig, D-04109 Leipzig, GermanyUniv Paris 05, Paris, FranceCharite, D-13353 Berlin, GermanyUniv Helsinki, Obstet & Gynecol, Helsinki, FinlandNIHR Univ Coll London Hosp, Biomed Res Ctr, Inst Womens Hlth, London, EnglandMed Univ Vienna, Dept Obstet & Gynecol, Vienna, AustriaOslo Univ Hosp, Dept Obstet & Gynecol, Oslo, NorwayUniv Oslo, Oslo, NorwayUniv Estadual Paulista, Dept Obstet, Botucatu, SP, BrazilNational Institute for Health Research: RP-2014-05-019Elsevier B.V.Univ OxfordUniv British ColumbiaYale UnivUniv MilanKings Coll LondonUniv BarcelonaHosp Univ 12 OctubreUniv ComplutenseMichigan State UnivUniv PittsburghAarhus Univ HospAarhus UnivUniv HelsinkiHelsinki Univ HospUniv BaselHarvard UnivKlagenfurt & Med UnivSt Marys HospUniv ManchesterUniv Texas HoustonUniversidade Estadual Paulista (Unesp)Univ Texas Med BranchUniv AmsterdamErasmus MCUniv JenaUniv LeipzigUniversidade de São Paulo (USP)ChariteNIHR Univ Coll London HospMed Univ ViennaOslo Univ HospUniv OsloBurke, OrlaithBenton, SamanthaSzafranski, Pawelvon Dadelszen, PeterBuhimschi, S. CatalinCetin, IreneChappell, LucyFigueras, FrancescGalindo, AlbertoHerraiz, IgnacioHolzman, ClaudiaHubel, CarlKnudsen, UllaKronborg, CamillaLaivuori, HanneleLapaire, OlavMcElrath, ThomasMoertl, ManfredMyers, JennyNess, Roberta B.Oliveira, Leandro [UNESP]Olson, GaylePoston, LucillaRis-Stalpers, CarrieRoberts, James M.Schalekamp-Timmermans, SarahSchlembach, DietmarSteegers, EricStepan, HolgerTsatsaris, Vassilisvan der Post, Joris A.Verlohren, StefanVilla, Pia M.Williams, DavidZeisler, HaraldRedman, Christopher W. G.Staff, Anne CathrineGlobal Pregnancy Collaboration2018-11-26T16:28:07Z2018-11-26T16:28:07Z2016-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article53-59application/pdfhttp://dx.doi.org/10.1016/j.preghy.2015.12.002Pregnancy Hypertension-an International Journal Of Womens Cardiovascular Health. Oxford: Elsevier Sci Ltd, v. 6, n. 1, p. 53-59, 2016.2210-7789http://hdl.handle.net/11449/16134410.1016/j.preghy.2015.12.002WOS:000372763700010WOS000372763700010.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPregnancy Hypertension-an International Journal Of Womens Cardiovascular Health1,205info:eu-repo/semantics/openAccess2024-08-16T14:06:21Zoai:repositorio.unesp.br:11449/161344Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-16T14:06:21Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Extending the scope of pooled analyses of individual patient biomarker data from heterogeneous laboratory platforms and cohorts using merging algorithms
title Extending the scope of pooled analyses of individual patient biomarker data from heterogeneous laboratory platforms and cohorts using merging algorithms
spellingShingle Extending the scope of pooled analyses of individual patient biomarker data from heterogeneous laboratory platforms and cohorts using merging algorithms
Burke, Orlaith
Merging algorithms
Individual patient data
Best reference curve
Pooled analysis
Biomarker data
Pre-eclampsia
title_short Extending the scope of pooled analyses of individual patient biomarker data from heterogeneous laboratory platforms and cohorts using merging algorithms
title_full Extending the scope of pooled analyses of individual patient biomarker data from heterogeneous laboratory platforms and cohorts using merging algorithms
title_fullStr Extending the scope of pooled analyses of individual patient biomarker data from heterogeneous laboratory platforms and cohorts using merging algorithms
title_full_unstemmed Extending the scope of pooled analyses of individual patient biomarker data from heterogeneous laboratory platforms and cohorts using merging algorithms
title_sort Extending the scope of pooled analyses of individual patient biomarker data from heterogeneous laboratory platforms and cohorts using merging algorithms
author Burke, Orlaith
author_facet Burke, Orlaith
Benton, Samantha
Szafranski, Pawel
von Dadelszen, Peter
Buhimschi, S. Catalin
Cetin, Irene
Chappell, Lucy
Figueras, Francesc
Galindo, Alberto
Herraiz, Ignacio
Holzman, Claudia
Hubel, Carl
Knudsen, Ulla
Kronborg, Camilla
Laivuori, Hannele
Lapaire, Olav
McElrath, Thomas
Moertl, Manfred
Myers, Jenny
Ness, Roberta B.
Oliveira, Leandro [UNESP]
Olson, Gayle
Poston, Lucilla
Ris-Stalpers, Carrie
Roberts, James M.
Schalekamp-Timmermans, Sarah
Schlembach, Dietmar
Steegers, Eric
Stepan, Holger
Tsatsaris, Vassilis
van der Post, Joris A.
Verlohren, Stefan
Villa, Pia M.
Williams, David
Zeisler, Harald
Redman, Christopher W. G.
Staff, Anne Cathrine
Global Pregnancy Collaboration
author_role author
author2 Benton, Samantha
Szafranski, Pawel
von Dadelszen, Peter
Buhimschi, S. Catalin
Cetin, Irene
Chappell, Lucy
Figueras, Francesc
Galindo, Alberto
Herraiz, Ignacio
Holzman, Claudia
Hubel, Carl
Knudsen, Ulla
Kronborg, Camilla
Laivuori, Hannele
Lapaire, Olav
McElrath, Thomas
Moertl, Manfred
Myers, Jenny
Ness, Roberta B.
Oliveira, Leandro [UNESP]
Olson, Gayle
Poston, Lucilla
Ris-Stalpers, Carrie
Roberts, James M.
Schalekamp-Timmermans, Sarah
Schlembach, Dietmar
Steegers, Eric
Stepan, Holger
Tsatsaris, Vassilis
van der Post, Joris A.
Verlohren, Stefan
Villa, Pia M.
Williams, David
Zeisler, Harald
Redman, Christopher W. G.
Staff, Anne Cathrine
Global Pregnancy Collaboration
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Univ Oxford
Univ British Columbia
Yale Univ
Univ Milan
Kings Coll London
Univ Barcelona
Hosp Univ 12 Octubre
Univ Complutense
Michigan State Univ
Univ Pittsburgh
Aarhus Univ Hosp
Aarhus Univ
Univ Helsinki
Helsinki Univ Hosp
Univ Basel
Harvard Univ
Klagenfurt & Med Univ
St Marys Hosp
Univ Manchester
Univ Texas Houston
Universidade Estadual Paulista (Unesp)
Univ Texas Med Branch
Univ Amsterdam
Erasmus MC
Univ Jena
Univ Leipzig
Universidade de São Paulo (USP)
Charite
NIHR Univ Coll London Hosp
Med Univ Vienna
Oslo Univ Hosp
Univ Oslo
dc.contributor.author.fl_str_mv Burke, Orlaith
Benton, Samantha
Szafranski, Pawel
von Dadelszen, Peter
Buhimschi, S. Catalin
Cetin, Irene
Chappell, Lucy
Figueras, Francesc
Galindo, Alberto
Herraiz, Ignacio
Holzman, Claudia
Hubel, Carl
Knudsen, Ulla
Kronborg, Camilla
Laivuori, Hannele
Lapaire, Olav
McElrath, Thomas
Moertl, Manfred
Myers, Jenny
Ness, Roberta B.
Oliveira, Leandro [UNESP]
Olson, Gayle
Poston, Lucilla
Ris-Stalpers, Carrie
Roberts, James M.
Schalekamp-Timmermans, Sarah
Schlembach, Dietmar
Steegers, Eric
Stepan, Holger
Tsatsaris, Vassilis
van der Post, Joris A.
Verlohren, Stefan
Villa, Pia M.
Williams, David
Zeisler, Harald
Redman, Christopher W. G.
Staff, Anne Cathrine
Global Pregnancy Collaboration
dc.subject.por.fl_str_mv Merging algorithms
Individual patient data
Best reference curve
Pooled analysis
Biomarker data
Pre-eclampsia
topic Merging algorithms
Individual patient data
Best reference curve
Pooled analysis
Biomarker data
Pre-eclampsia
description Background: A common challenge in medicine, exemplified in the analysis of biomarker data, is that large studies are needed for sufficient statistical power. Often, this may only be achievable by aggregating multiple cohorts. However, different studies may use disparate platforms for laboratory analysis, which can hinder merging. Methods: Using circulating placental growth factor (PIGF), a potential biomarker for hypertensive disorders of pregnancy (HDP) such as preeclampsia, as an example, we investigated how such issues can be overcome by inter-platform standardization and merging algorithms. We studied 16,462 pregnancies from 22 study cohorts. PIGF measurements (gestational age >= 20 weeks) analyzed on one of four platforms: R & Systems, Alere (R) Triage, Roche (R) Elecsys or Abbott (R) Architect, were available for 13,429 women. Two merging algorithms, using Z-Score and Multiple of Median transformations, were applied. Results: Best reference curves (BRC), based on merged, transformed PIGF measurements in uncomplicated pregnancy across six gestational age groups, were estimated. Identification of HDP by these PIGF-BRCS was compared to that of platform-specific curves. Conclusions: We demonstrate the feasibility of merging PIGF concentrations from different analytical platforms. Overall BRC identification of HDP performed at least as well as platform-specific curves. Our method can be extended to any set of biomarkers obtained from different laboratory platforms in any field. Merged biomarker data from multiple studies will improve statistical power and enlarge our understanding of the pathophysiology and management of medical syndromes. (C) 2015 International Society for the Study of Hypertension in Pregnancy. Published by Elsevier B.V. All rights reserved.
publishDate 2016
dc.date.none.fl_str_mv 2016-01-01
2018-11-26T16:28:07Z
2018-11-26T16:28:07Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.preghy.2015.12.002
Pregnancy Hypertension-an International Journal Of Womens Cardiovascular Health. Oxford: Elsevier Sci Ltd, v. 6, n. 1, p. 53-59, 2016.
2210-7789
http://hdl.handle.net/11449/161344
10.1016/j.preghy.2015.12.002
WOS:000372763700010
WOS000372763700010.pdf
url http://dx.doi.org/10.1016/j.preghy.2015.12.002
http://hdl.handle.net/11449/161344
identifier_str_mv Pregnancy Hypertension-an International Journal Of Womens Cardiovascular Health. Oxford: Elsevier Sci Ltd, v. 6, n. 1, p. 53-59, 2016.
2210-7789
10.1016/j.preghy.2015.12.002
WOS:000372763700010
WOS000372763700010.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Pregnancy Hypertension-an International Journal Of Womens Cardiovascular Health
1,205
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 53-59
application/pdf
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128100104404992