Extending the scope of pooled analyses of individual patient biomarker data from heterogeneous laboratory platforms and cohorts using merging algorithms
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.preghy.2015.12.002 http://hdl.handle.net/11449/161344 |
Resumo: | Background: A common challenge in medicine, exemplified in the analysis of biomarker data, is that large studies are needed for sufficient statistical power. Often, this may only be achievable by aggregating multiple cohorts. However, different studies may use disparate platforms for laboratory analysis, which can hinder merging. Methods: Using circulating placental growth factor (PIGF), a potential biomarker for hypertensive disorders of pregnancy (HDP) such as preeclampsia, as an example, we investigated how such issues can be overcome by inter-platform standardization and merging algorithms. We studied 16,462 pregnancies from 22 study cohorts. PIGF measurements (gestational age >= 20 weeks) analyzed on one of four platforms: R & Systems, Alere (R) Triage, Roche (R) Elecsys or Abbott (R) Architect, were available for 13,429 women. Two merging algorithms, using Z-Score and Multiple of Median transformations, were applied. Results: Best reference curves (BRC), based on merged, transformed PIGF measurements in uncomplicated pregnancy across six gestational age groups, were estimated. Identification of HDP by these PIGF-BRCS was compared to that of platform-specific curves. Conclusions: We demonstrate the feasibility of merging PIGF concentrations from different analytical platforms. Overall BRC identification of HDP performed at least as well as platform-specific curves. Our method can be extended to any set of biomarkers obtained from different laboratory platforms in any field. Merged biomarker data from multiple studies will improve statistical power and enlarge our understanding of the pathophysiology and management of medical syndromes. (C) 2015 International Society for the Study of Hypertension in Pregnancy. Published by Elsevier B.V. All rights reserved. |
id |
UNSP_593039b9ae3fa383ea1650e483bb2738 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/161344 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Extending the scope of pooled analyses of individual patient biomarker data from heterogeneous laboratory platforms and cohorts using merging algorithmsMerging algorithmsIndividual patient dataBest reference curvePooled analysisBiomarker dataPre-eclampsiaBackground: A common challenge in medicine, exemplified in the analysis of biomarker data, is that large studies are needed for sufficient statistical power. Often, this may only be achievable by aggregating multiple cohorts. However, different studies may use disparate platforms for laboratory analysis, which can hinder merging. Methods: Using circulating placental growth factor (PIGF), a potential biomarker for hypertensive disorders of pregnancy (HDP) such as preeclampsia, as an example, we investigated how such issues can be overcome by inter-platform standardization and merging algorithms. We studied 16,462 pregnancies from 22 study cohorts. PIGF measurements (gestational age >= 20 weeks) analyzed on one of four platforms: R & Systems, Alere (R) Triage, Roche (R) Elecsys or Abbott (R) Architect, were available for 13,429 women. Two merging algorithms, using Z-Score and Multiple of Median transformations, were applied. Results: Best reference curves (BRC), based on merged, transformed PIGF measurements in uncomplicated pregnancy across six gestational age groups, were estimated. Identification of HDP by these PIGF-BRCS was compared to that of platform-specific curves. Conclusions: We demonstrate the feasibility of merging PIGF concentrations from different analytical platforms. Overall BRC identification of HDP performed at least as well as platform-specific curves. Our method can be extended to any set of biomarkers obtained from different laboratory platforms in any field. Merged biomarker data from multiple studies will improve statistical power and enlarge our understanding of the pathophysiology and management of medical syndromes. (C) 2015 International Society for the Study of Hypertension in Pregnancy. Published by Elsevier B.V. All rights reserved.Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthNational Institute for Health ResearchUniv Oxford, Nuffield Dept Populat Hlth, Old Rd Campus, Oxford OX3 7LF, EnglandUniv British Columbia, Dept Obstet & Gynaecol, Vancouver, BC V5Z 1M9, CanadaUniv British Columbia, Child & Family Res Inst, Vancouver, BC V5Z 1M9, CanadaUniv Oxford, Nuffield Dept Obstet & Gynaecol, Oxford, EnglandYale Univ, New Haven, CT USAUniv Milan, I-20122 Milan, ItalyKings Coll London, Womens Hlth Acad Ctr, London WC2R 2LS, EnglandUniv Barcelona, Hosp Clin, Barcelona, SpainHosp Univ 12 Octubre, Dept Obstet & Gynecol, Fetal Med Unit, Madrid, SpainUniv Complutense, E-28040 Madrid, SpainMichigan State Univ, E Lansing, MI 48824 USAUniv Pittsburgh, Magee Womens Res Inst, Pittsburgh, PA USAAarhus Univ Hosp, Dept Obstet & Gynecol, DK-8000 Aarhus, DenmarkAarhus Univ, Aarhus, DenmarkAarhus Univ Hosp, Dept Oncol, DK-8000 Aarhus, DenmarkUniv Helsinki, Med Genet Obstet & Gynaecol, Helsinki, FinlandUniv Helsinki, Inst Mol Med Finland, Helsinki, FinlandHelsinki Univ Hosp, Helsinki, FinlandUniv Basel, Basel, SwitzerlandHarvard Univ, Brigham & Womens Hosp, Sch Med, Boston, MA 02115 USAKlagenfurt & Med Univ, Interdisciplinary Ctr Gynecol Gynecooncol & Fetom, Graz, AustriaSt Marys Hosp, Maternal & Fetal Hlth Res Ctr, Manchester M13 0JH, Lancs, EnglandUniv Manchester, Manchester, Lancs, EnglandUniv Texas Houston, Sch Publ Hlth, Houston, TX USAUniv Estadual Paulista, Dept Obstet, Botucatu, SP, BrazilUniv Texas Med Branch, Galveston, TX 77555 USAUniv Amsterdam, Acad Med Ctr, Dept Obstet & Gynaecol, Meibergdreef 9, NL-1105 AZ Amsterdam, NetherlandsErasmus MC, Rotterdam, NetherlandsUniv Jena, D-07745 Jena, GermanyUniv Leipzig, D-04109 Leipzig, GermanyUniv Paris 05, Paris, FranceCharite, D-13353 Berlin, GermanyUniv Helsinki, Obstet & Gynecol, Helsinki, FinlandNIHR Univ Coll London Hosp, Biomed Res Ctr, Inst Womens Hlth, London, EnglandMed Univ Vienna, Dept Obstet & Gynecol, Vienna, AustriaOslo Univ Hosp, Dept Obstet & Gynecol, Oslo, NorwayUniv Oslo, Oslo, NorwayUniv Estadual Paulista, Dept Obstet, Botucatu, SP, BrazilNational Institute for Health Research: RP-2014-05-019Elsevier B.V.Univ OxfordUniv British ColumbiaYale UnivUniv MilanKings Coll LondonUniv BarcelonaHosp Univ 12 OctubreUniv ComplutenseMichigan State UnivUniv PittsburghAarhus Univ HospAarhus UnivUniv HelsinkiHelsinki Univ HospUniv BaselHarvard UnivKlagenfurt & Med UnivSt Marys HospUniv ManchesterUniv Texas HoustonUniversidade Estadual Paulista (Unesp)Univ Texas Med BranchUniv AmsterdamErasmus MCUniv JenaUniv LeipzigUniversidade de São Paulo (USP)ChariteNIHR Univ Coll London HospMed Univ ViennaOslo Univ HospUniv OsloBurke, OrlaithBenton, SamanthaSzafranski, Pawelvon Dadelszen, PeterBuhimschi, S. CatalinCetin, IreneChappell, LucyFigueras, FrancescGalindo, AlbertoHerraiz, IgnacioHolzman, ClaudiaHubel, CarlKnudsen, UllaKronborg, CamillaLaivuori, HanneleLapaire, OlavMcElrath, ThomasMoertl, ManfredMyers, JennyNess, Roberta B.Oliveira, Leandro [UNESP]Olson, GaylePoston, LucillaRis-Stalpers, CarrieRoberts, James M.Schalekamp-Timmermans, SarahSchlembach, DietmarSteegers, EricStepan, HolgerTsatsaris, Vassilisvan der Post, Joris A.Verlohren, StefanVilla, Pia M.Williams, DavidZeisler, HaraldRedman, Christopher W. G.Staff, Anne CathrineGlobal Pregnancy Collaboration2018-11-26T16:28:07Z2018-11-26T16:28:07Z2016-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article53-59application/pdfhttp://dx.doi.org/10.1016/j.preghy.2015.12.002Pregnancy Hypertension-an International Journal Of Womens Cardiovascular Health. Oxford: Elsevier Sci Ltd, v. 6, n. 1, p. 53-59, 2016.2210-7789http://hdl.handle.net/11449/16134410.1016/j.preghy.2015.12.002WOS:000372763700010WOS000372763700010.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPregnancy Hypertension-an International Journal Of Womens Cardiovascular Health1,205info:eu-repo/semantics/openAccess2024-08-16T14:06:21Zoai:repositorio.unesp.br:11449/161344Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-16T14:06:21Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Extending the scope of pooled analyses of individual patient biomarker data from heterogeneous laboratory platforms and cohorts using merging algorithms |
title |
Extending the scope of pooled analyses of individual patient biomarker data from heterogeneous laboratory platforms and cohorts using merging algorithms |
spellingShingle |
Extending the scope of pooled analyses of individual patient biomarker data from heterogeneous laboratory platforms and cohorts using merging algorithms Burke, Orlaith Merging algorithms Individual patient data Best reference curve Pooled analysis Biomarker data Pre-eclampsia |
title_short |
Extending the scope of pooled analyses of individual patient biomarker data from heterogeneous laboratory platforms and cohorts using merging algorithms |
title_full |
Extending the scope of pooled analyses of individual patient biomarker data from heterogeneous laboratory platforms and cohorts using merging algorithms |
title_fullStr |
Extending the scope of pooled analyses of individual patient biomarker data from heterogeneous laboratory platforms and cohorts using merging algorithms |
title_full_unstemmed |
Extending the scope of pooled analyses of individual patient biomarker data from heterogeneous laboratory platforms and cohorts using merging algorithms |
title_sort |
Extending the scope of pooled analyses of individual patient biomarker data from heterogeneous laboratory platforms and cohorts using merging algorithms |
author |
Burke, Orlaith |
author_facet |
Burke, Orlaith Benton, Samantha Szafranski, Pawel von Dadelszen, Peter Buhimschi, S. Catalin Cetin, Irene Chappell, Lucy Figueras, Francesc Galindo, Alberto Herraiz, Ignacio Holzman, Claudia Hubel, Carl Knudsen, Ulla Kronborg, Camilla Laivuori, Hannele Lapaire, Olav McElrath, Thomas Moertl, Manfred Myers, Jenny Ness, Roberta B. Oliveira, Leandro [UNESP] Olson, Gayle Poston, Lucilla Ris-Stalpers, Carrie Roberts, James M. Schalekamp-Timmermans, Sarah Schlembach, Dietmar Steegers, Eric Stepan, Holger Tsatsaris, Vassilis van der Post, Joris A. Verlohren, Stefan Villa, Pia M. Williams, David Zeisler, Harald Redman, Christopher W. G. Staff, Anne Cathrine Global Pregnancy Collaboration |
author_role |
author |
author2 |
Benton, Samantha Szafranski, Pawel von Dadelszen, Peter Buhimschi, S. Catalin Cetin, Irene Chappell, Lucy Figueras, Francesc Galindo, Alberto Herraiz, Ignacio Holzman, Claudia Hubel, Carl Knudsen, Ulla Kronborg, Camilla Laivuori, Hannele Lapaire, Olav McElrath, Thomas Moertl, Manfred Myers, Jenny Ness, Roberta B. Oliveira, Leandro [UNESP] Olson, Gayle Poston, Lucilla Ris-Stalpers, Carrie Roberts, James M. Schalekamp-Timmermans, Sarah Schlembach, Dietmar Steegers, Eric Stepan, Holger Tsatsaris, Vassilis van der Post, Joris A. Verlohren, Stefan Villa, Pia M. Williams, David Zeisler, Harald Redman, Christopher W. G. Staff, Anne Cathrine Global Pregnancy Collaboration |
author2_role |
author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author |
dc.contributor.none.fl_str_mv |
Univ Oxford Univ British Columbia Yale Univ Univ Milan Kings Coll London Univ Barcelona Hosp Univ 12 Octubre Univ Complutense Michigan State Univ Univ Pittsburgh Aarhus Univ Hosp Aarhus Univ Univ Helsinki Helsinki Univ Hosp Univ Basel Harvard Univ Klagenfurt & Med Univ St Marys Hosp Univ Manchester Univ Texas Houston Universidade Estadual Paulista (Unesp) Univ Texas Med Branch Univ Amsterdam Erasmus MC Univ Jena Univ Leipzig Universidade de São Paulo (USP) Charite NIHR Univ Coll London Hosp Med Univ Vienna Oslo Univ Hosp Univ Oslo |
dc.contributor.author.fl_str_mv |
Burke, Orlaith Benton, Samantha Szafranski, Pawel von Dadelszen, Peter Buhimschi, S. Catalin Cetin, Irene Chappell, Lucy Figueras, Francesc Galindo, Alberto Herraiz, Ignacio Holzman, Claudia Hubel, Carl Knudsen, Ulla Kronborg, Camilla Laivuori, Hannele Lapaire, Olav McElrath, Thomas Moertl, Manfred Myers, Jenny Ness, Roberta B. Oliveira, Leandro [UNESP] Olson, Gayle Poston, Lucilla Ris-Stalpers, Carrie Roberts, James M. Schalekamp-Timmermans, Sarah Schlembach, Dietmar Steegers, Eric Stepan, Holger Tsatsaris, Vassilis van der Post, Joris A. Verlohren, Stefan Villa, Pia M. Williams, David Zeisler, Harald Redman, Christopher W. G. Staff, Anne Cathrine Global Pregnancy Collaboration |
dc.subject.por.fl_str_mv |
Merging algorithms Individual patient data Best reference curve Pooled analysis Biomarker data Pre-eclampsia |
topic |
Merging algorithms Individual patient data Best reference curve Pooled analysis Biomarker data Pre-eclampsia |
description |
Background: A common challenge in medicine, exemplified in the analysis of biomarker data, is that large studies are needed for sufficient statistical power. Often, this may only be achievable by aggregating multiple cohorts. However, different studies may use disparate platforms for laboratory analysis, which can hinder merging. Methods: Using circulating placental growth factor (PIGF), a potential biomarker for hypertensive disorders of pregnancy (HDP) such as preeclampsia, as an example, we investigated how such issues can be overcome by inter-platform standardization and merging algorithms. We studied 16,462 pregnancies from 22 study cohorts. PIGF measurements (gestational age >= 20 weeks) analyzed on one of four platforms: R & Systems, Alere (R) Triage, Roche (R) Elecsys or Abbott (R) Architect, were available for 13,429 women. Two merging algorithms, using Z-Score and Multiple of Median transformations, were applied. Results: Best reference curves (BRC), based on merged, transformed PIGF measurements in uncomplicated pregnancy across six gestational age groups, were estimated. Identification of HDP by these PIGF-BRCS was compared to that of platform-specific curves. Conclusions: We demonstrate the feasibility of merging PIGF concentrations from different analytical platforms. Overall BRC identification of HDP performed at least as well as platform-specific curves. Our method can be extended to any set of biomarkers obtained from different laboratory platforms in any field. Merged biomarker data from multiple studies will improve statistical power and enlarge our understanding of the pathophysiology and management of medical syndromes. (C) 2015 International Society for the Study of Hypertension in Pregnancy. Published by Elsevier B.V. All rights reserved. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-01-01 2018-11-26T16:28:07Z 2018-11-26T16:28:07Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.preghy.2015.12.002 Pregnancy Hypertension-an International Journal Of Womens Cardiovascular Health. Oxford: Elsevier Sci Ltd, v. 6, n. 1, p. 53-59, 2016. 2210-7789 http://hdl.handle.net/11449/161344 10.1016/j.preghy.2015.12.002 WOS:000372763700010 WOS000372763700010.pdf |
url |
http://dx.doi.org/10.1016/j.preghy.2015.12.002 http://hdl.handle.net/11449/161344 |
identifier_str_mv |
Pregnancy Hypertension-an International Journal Of Womens Cardiovascular Health. Oxford: Elsevier Sci Ltd, v. 6, n. 1, p. 53-59, 2016. 2210-7789 10.1016/j.preghy.2015.12.002 WOS:000372763700010 WOS000372763700010.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Pregnancy Hypertension-an International Journal Of Womens Cardiovascular Health 1,205 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
53-59 application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128100104404992 |