Revisiting the minimal universal extra dimensions with mass-dimension-five operators

Detalhes bibliográficos
Autor(a) principal: Dias, M.
Data de Publicação: 2020
Outros Autores: Duarte, Laura [UNESP], de Campos, F. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1209/0295-5075/132/61001
http://hdl.handle.net/11449/207500
Resumo: We examine a minimally modified version of the minimal universal extra dimension, using electric and magnetic dipole moments and Higgs portals operators to describe new interactions between fermionic dark matter and Standard Model particles. We assume the dark matter in the form of weakly interacting massive particle (WIMP). This suggests that the four-dimensional (3 + 1)D theory is naturally suppressed by the size of the extra dimension R, without adding new free parameters to the model. We show the LHC potential to discover the fermionic WIMP considering the mono-jet +E T channel, highlighting the existence of a viable mass range and compactification scale, R−1, in this new scenario. Using ATLAS data for this channel, corresponding to an integrated luminosity of 36.1 fb−1 in the √s = 13 TeV analysis, we found a lower bound for R−1. We identify that for a compactification scale of 850 GeV, our fermionic particle is a viable candidate to a dark matter constituent which has been shown to be compatible with relic abundance measurements from the Planck Collaboration.
id UNSP_599e5fe12819bc8bd7d66b99079d3a8b
oai_identifier_str oai:repositorio.unesp.br:11449/207500
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Revisiting the minimal universal extra dimensions with mass-dimension-five operatorsWe examine a minimally modified version of the minimal universal extra dimension, using electric and magnetic dipole moments and Higgs portals operators to describe new interactions between fermionic dark matter and Standard Model particles. We assume the dark matter in the form of weakly interacting massive particle (WIMP). This suggests that the four-dimensional (3 + 1)D theory is naturally suppressed by the size of the extra dimension R, without adding new free parameters to the model. We show the LHC potential to discover the fermionic WIMP considering the mono-jet +E T channel, highlighting the existence of a viable mass range and compactification scale, R−1, in this new scenario. Using ATLAS data for this channel, corresponding to an integrated luminosity of 36.1 fb−1 in the √s = 13 TeV analysis, we found a lower bound for R−1. We identify that for a compactification scale of 850 GeV, our fermionic particle is a viable candidate to a dark matter constituent which has been shown to be compatible with relic abundance measurements from the Planck Collaboration.Departamento de Física Universidade Federal de São Paulo (UNIFESP)Departamento de Física e Química Universidade Estadual Paulista (UNESP) - GuaratinguetáDepartamento de Engenharia Ambiental ICT-Universidade Estadual Paulista (UNESP)Departamento de Física e Química Universidade Estadual Paulista (UNESP) - GuaratinguetáDepartamento de Engenharia Ambiental ICT-Universidade Estadual Paulista (UNESP)Universidade Federal de São Paulo (UNIFESP)Universidade Estadual Paulista (Unesp)Dias, M.Duarte, Laura [UNESP]de Campos, F. [UNESP]2021-06-25T10:56:15Z2021-06-25T10:56:15Z2020-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1209/0295-5075/132/61001EPL, v. 132, n. 6, 2020.1286-48540295-5075http://hdl.handle.net/11449/20750010.1209/0295-5075/132/610012-s2.0-85103016248Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengEPLinfo:eu-repo/semantics/openAccess2024-07-01T20:52:07Zoai:repositorio.unesp.br:11449/207500Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:14:02.818645Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Revisiting the minimal universal extra dimensions with mass-dimension-five operators
title Revisiting the minimal universal extra dimensions with mass-dimension-five operators
spellingShingle Revisiting the minimal universal extra dimensions with mass-dimension-five operators
Dias, M.
title_short Revisiting the minimal universal extra dimensions with mass-dimension-five operators
title_full Revisiting the minimal universal extra dimensions with mass-dimension-five operators
title_fullStr Revisiting the minimal universal extra dimensions with mass-dimension-five operators
title_full_unstemmed Revisiting the minimal universal extra dimensions with mass-dimension-five operators
title_sort Revisiting the minimal universal extra dimensions with mass-dimension-five operators
author Dias, M.
author_facet Dias, M.
Duarte, Laura [UNESP]
de Campos, F. [UNESP]
author_role author
author2 Duarte, Laura [UNESP]
de Campos, F. [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Federal de São Paulo (UNIFESP)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Dias, M.
Duarte, Laura [UNESP]
de Campos, F. [UNESP]
description We examine a minimally modified version of the minimal universal extra dimension, using electric and magnetic dipole moments and Higgs portals operators to describe new interactions between fermionic dark matter and Standard Model particles. We assume the dark matter in the form of weakly interacting massive particle (WIMP). This suggests that the four-dimensional (3 + 1)D theory is naturally suppressed by the size of the extra dimension R, without adding new free parameters to the model. We show the LHC potential to discover the fermionic WIMP considering the mono-jet +E T channel, highlighting the existence of a viable mass range and compactification scale, R−1, in this new scenario. Using ATLAS data for this channel, corresponding to an integrated luminosity of 36.1 fb−1 in the √s = 13 TeV analysis, we found a lower bound for R−1. We identify that for a compactification scale of 850 GeV, our fermionic particle is a viable candidate to a dark matter constituent which has been shown to be compatible with relic abundance measurements from the Planck Collaboration.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-01
2021-06-25T10:56:15Z
2021-06-25T10:56:15Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1209/0295-5075/132/61001
EPL, v. 132, n. 6, 2020.
1286-4854
0295-5075
http://hdl.handle.net/11449/207500
10.1209/0295-5075/132/61001
2-s2.0-85103016248
url http://dx.doi.org/10.1209/0295-5075/132/61001
http://hdl.handle.net/11449/207500
identifier_str_mv EPL, v. 132, n. 6, 2020.
1286-4854
0295-5075
10.1209/0295-5075/132/61001
2-s2.0-85103016248
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv EPL
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128484429529088