Giant and Tunable Anisotropy of Nanoscale Friction in Graphene
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1038/srep31569 http://hdl.handle.net/11449/161827 |
Resumo: | The nanoscale friction between an atomic force microscopy tip and graphene is investigated using friction force microscopy (FFM). During the tip movement, friction forces are observed to increase and then saturate in a highly anisotropic manner. As a result, the friction forces in graphene are highly dependent on the scanning direction: under some conditions, the energy dissipated along the armchair direction can be 80% higher than along the zigzag direction. In comparison, for highly-oriented pyrolitic graphite (HOPG), the friction anisotropy between armchair and zigzag directions is only 15%. This giant friction anisotropy in graphene results from anisotropies in the amplitudes of flexural deformations of the graphene sheet driven by the tip movement, not present in HOPG. The effect can be seen as a novel manifestation of the classical phenomenon of Euler buckling at the nanoscale, which provides the non-linear ingredients that amplify friction anisotropy. Simulations based on a novel version of the 2D Tomlinson model (modified to include the effects of flexural deformations), as well as fully atomistic molecular dynamics simulations and first-principles density-functional theory (DFT) calculations, are able to reproduce and explain the experimental observations. |
id |
UNSP_5a0c70c43826d3d6736f759a44a50b8a |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/161827 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Giant and Tunable Anisotropy of Nanoscale Friction in GrapheneThe nanoscale friction between an atomic force microscopy tip and graphene is investigated using friction force microscopy (FFM). During the tip movement, friction forces are observed to increase and then saturate in a highly anisotropic manner. As a result, the friction forces in graphene are highly dependent on the scanning direction: under some conditions, the energy dissipated along the armchair direction can be 80% higher than along the zigzag direction. In comparison, for highly-oriented pyrolitic graphite (HOPG), the friction anisotropy between armchair and zigzag directions is only 15%. This giant friction anisotropy in graphene results from anisotropies in the amplitudes of flexural deformations of the graphene sheet driven by the tip movement, not present in HOPG. The effect can be seen as a novel manifestation of the classical phenomenon of Euler buckling at the nanoscale, which provides the non-linear ingredients that amplify friction anisotropy. Simulations based on a novel version of the 2D Tomlinson model (modified to include the effects of flexural deformations), as well as fully atomistic molecular dynamics simulations and first-principles density-functional theory (DFT) calculations, are able to reproduce and explain the experimental observations.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)grant PRONAMETROInst Nacl Metrol Normalizacao & Qualidade Ind INI, Div Metrol Mat, Campus Xerem,Av Nossa Senhora das Gracas 50, BR-25250020 Duque De Caxias, RJ, BrazilPontificia Univ Catolica Rio de Janeiro, Dept Fis, R Marques de Sao Vicente 225, BR-22453900 Rio De Janeiro, RJ, BrazilInst Cidncias Exatas, Dept Fis, BR-36036900 Juiz De Fora, MG, BrazilUniv Fed Minas Gerais, Dept Fis, Inst Ciencias Exatas, Av Antonio Carlos 6627, BR-31270901 Belo Horizonte, MG, BrazilUniv Estadual Paulista, Dept Fis, Campus Rio Claro,Av 24A 1515, BR-13506900 Rio Claro, SP, BrazilUniv Estadual Campinas, Inst Fis Gleb Wataghin, R Sergio Buarque de Holanda,777 Cidade Univ, BR-13083859 Campinas, SP, BrazilUniv Fed Rio de Janeiro, Inst Fis, Av Athos da Silveira Ramos,149 Cidade Univ, BR-21941590 Rio De Janeiro, RJ, BrazilUniv Estadual Paulista, Dept Fis, Campus Rio Claro,Av 24A 1515, BR-13506900 Rio Claro, SP, BrazilFAPESP: 2014/15521-9FAPESP: 2013/08293-7grant PRONAMETRO: 52600.056330/2012grant PRONAMETRO: 52600.030929/2014Nature Publishing GroupInst Nacl Metrol Normalizacao & Qualidade Ind INIPontificia Univ Catolica Rio de JaneiroInst Cidncias ExatasUniversidade Federal de Minas Gerais (UFMG)Universidade Estadual Paulista (Unesp)Universidade Estadual de Campinas (UNICAMP)Universidade Federal do Rio de Janeiro (UFRJ)Almeida, Clara M.Prioli, RodrigoFragneaud, BenjaminCancado, Luiz GustavoPaupitz, Ricardo [UNESP]Galvao, Douglas S.De Cicco, MarceloMenezes, Marcos G.Achete, Carlos A.Capaz, Rodrigo B.2018-11-26T16:56:23Z2018-11-26T16:56:23Z2016-08-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article9application/pdfhttp://dx.doi.org/10.1038/srep31569Scientific Reports. London: Nature Publishing Group, v. 6, 9 p., 2016.2045-2322http://hdl.handle.net/11449/16182710.1038/srep31569WOS:000381558500001WOS000381558500001.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengScientific Reports1,533info:eu-repo/semantics/openAccess2024-01-11T06:32:50Zoai:repositorio.unesp.br:11449/161827Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:43:51.087611Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Giant and Tunable Anisotropy of Nanoscale Friction in Graphene |
title |
Giant and Tunable Anisotropy of Nanoscale Friction in Graphene |
spellingShingle |
Giant and Tunable Anisotropy of Nanoscale Friction in Graphene Almeida, Clara M. |
title_short |
Giant and Tunable Anisotropy of Nanoscale Friction in Graphene |
title_full |
Giant and Tunable Anisotropy of Nanoscale Friction in Graphene |
title_fullStr |
Giant and Tunable Anisotropy of Nanoscale Friction in Graphene |
title_full_unstemmed |
Giant and Tunable Anisotropy of Nanoscale Friction in Graphene |
title_sort |
Giant and Tunable Anisotropy of Nanoscale Friction in Graphene |
author |
Almeida, Clara M. |
author_facet |
Almeida, Clara M. Prioli, Rodrigo Fragneaud, Benjamin Cancado, Luiz Gustavo Paupitz, Ricardo [UNESP] Galvao, Douglas S. De Cicco, Marcelo Menezes, Marcos G. Achete, Carlos A. Capaz, Rodrigo B. |
author_role |
author |
author2 |
Prioli, Rodrigo Fragneaud, Benjamin Cancado, Luiz Gustavo Paupitz, Ricardo [UNESP] Galvao, Douglas S. De Cicco, Marcelo Menezes, Marcos G. Achete, Carlos A. Capaz, Rodrigo B. |
author2_role |
author author author author author author author author author |
dc.contributor.none.fl_str_mv |
Inst Nacl Metrol Normalizacao & Qualidade Ind INI Pontificia Univ Catolica Rio de Janeiro Inst Cidncias Exatas Universidade Federal de Minas Gerais (UFMG) Universidade Estadual Paulista (Unesp) Universidade Estadual de Campinas (UNICAMP) Universidade Federal do Rio de Janeiro (UFRJ) |
dc.contributor.author.fl_str_mv |
Almeida, Clara M. Prioli, Rodrigo Fragneaud, Benjamin Cancado, Luiz Gustavo Paupitz, Ricardo [UNESP] Galvao, Douglas S. De Cicco, Marcelo Menezes, Marcos G. Achete, Carlos A. Capaz, Rodrigo B. |
description |
The nanoscale friction between an atomic force microscopy tip and graphene is investigated using friction force microscopy (FFM). During the tip movement, friction forces are observed to increase and then saturate in a highly anisotropic manner. As a result, the friction forces in graphene are highly dependent on the scanning direction: under some conditions, the energy dissipated along the armchair direction can be 80% higher than along the zigzag direction. In comparison, for highly-oriented pyrolitic graphite (HOPG), the friction anisotropy between armchair and zigzag directions is only 15%. This giant friction anisotropy in graphene results from anisotropies in the amplitudes of flexural deformations of the graphene sheet driven by the tip movement, not present in HOPG. The effect can be seen as a novel manifestation of the classical phenomenon of Euler buckling at the nanoscale, which provides the non-linear ingredients that amplify friction anisotropy. Simulations based on a novel version of the 2D Tomlinson model (modified to include the effects of flexural deformations), as well as fully atomistic molecular dynamics simulations and first-principles density-functional theory (DFT) calculations, are able to reproduce and explain the experimental observations. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-08-18 2018-11-26T16:56:23Z 2018-11-26T16:56:23Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1038/srep31569 Scientific Reports. London: Nature Publishing Group, v. 6, 9 p., 2016. 2045-2322 http://hdl.handle.net/11449/161827 10.1038/srep31569 WOS:000381558500001 WOS000381558500001.pdf |
url |
http://dx.doi.org/10.1038/srep31569 http://hdl.handle.net/11449/161827 |
identifier_str_mv |
Scientific Reports. London: Nature Publishing Group, v. 6, 9 p., 2016. 2045-2322 10.1038/srep31569 WOS:000381558500001 WOS000381558500001.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Scientific Reports 1,533 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
9 application/pdf |
dc.publisher.none.fl_str_mv |
Nature Publishing Group |
publisher.none.fl_str_mv |
Nature Publishing Group |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129455558754304 |