Nonequilibrium Dynamics of the Chiral Quark Condensate under a Strong Magnetic Field
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.3390/sym13040551 http://hdl.handle.net/11449/210268 |
Resumo: | Strong magnetic fields impact quantum-chromodynamics (QCD) properties in several situations; examples include the early universe, magnetars, and heavy-ion collisions. These examples share a common trait-time evolution. A prominent QCD property impacted by a strong magnetic field is the quark condensate, an approximate order parameter of the QCD transition between a high-temperature quark-gluon phase and a low-temperature hadronic phase. We use the linear sigma model with quarks to address the quark condensate time evolution under a strong magnetic field. We use the closed time path formalism of nonequilibrium quantum field theory to integrate out the quarks and obtain a mean-field Langevin equation for the condensate. The Langevin equation features dissipation and noise kernels controlled by a damping coefficient. We compute the damping coefficient for magnetic field and temperature values achieved in peripheral relativistic heavy-ion collisions and solve the Langevin equation for a temperature quench scenario. The magnetic field changes the dissipation and noise pattern by increasing the damping coefficient compared to the zero-field case. An increased damping coefficient increases fluctuations and time scales controlling condensate's short-time evolution, a feature that can impact hadron formation at the QCD transition. The formalism developed here can be extended to include other order parameters, hydrodynamic modes, and system's expansion to address magnetic field effects in complex settings as heavy-ion collisions, the early universe, and magnetars. |
id |
UNSP_5b51fb9e106d01dbb531a1e524dca7ae |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/210268 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Nonequilibrium Dynamics of the Chiral Quark Condensate under a Strong Magnetic Fieldquantum chromodynamicschiral symmetryquark condensatequark-gluon plasmanonequilibrium dynamicsStrong magnetic fields impact quantum-chromodynamics (QCD) properties in several situations; examples include the early universe, magnetars, and heavy-ion collisions. These examples share a common trait-time evolution. A prominent QCD property impacted by a strong magnetic field is the quark condensate, an approximate order parameter of the QCD transition between a high-temperature quark-gluon phase and a low-temperature hadronic phase. We use the linear sigma model with quarks to address the quark condensate time evolution under a strong magnetic field. We use the closed time path formalism of nonequilibrium quantum field theory to integrate out the quarks and obtain a mean-field Langevin equation for the condensate. The Langevin equation features dissipation and noise kernels controlled by a damping coefficient. We compute the damping coefficient for magnetic field and temperature values achieved in peripheral relativistic heavy-ion collisions and solve the Langevin equation for a temperature quench scenario. The magnetic field changes the dissipation and noise pattern by increasing the damping coefficient compared to the zero-field case. An increased damping coefficient increases fluctuations and time scales controlling condensate's short-time evolution, a feature that can impact hadron formation at the QCD transition. The formalism developed here can be extended to include other order parameters, hydrodynamic modes, and system's expansion to address magnetic field effects in complex settings as heavy-ion collisions, the early universe, and magnetars.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Univ Estadual Paulista, Inst Fis Teor, Rua Dr Bento Teobaldo Ferraz 271 Bloco 2, BR-01140070 Sao Paulo, SP, BrazilUniv Estadual Paulista, Inst Fis Teor, Rua Dr Bento Teobaldo Ferraz 271 Bloco 2, BR-01140070 Sao Paulo, SP, BrazilCNPq: 309262/2019-4CNPq: 464898/2014-5FAPESP: 2018/252259MdpiUniversidade Estadual Paulista (Unesp)Krein, Gastao [UNESP]Miller, Carlisson [UNESP]2021-06-25T15:03:14Z2021-06-25T15:03:14Z2021-04-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article21http://dx.doi.org/10.3390/sym13040551Symmetry-basel. Basel: Mdpi, v. 13, n. 4, 21 p., 2021.http://hdl.handle.net/11449/21026810.3390/sym13040551WOS:000643637600001Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengSymmetry-baselinfo:eu-repo/semantics/openAccess2021-10-23T20:17:26Zoai:repositorio.unesp.br:11449/210268Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:26:18.952360Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Nonequilibrium Dynamics of the Chiral Quark Condensate under a Strong Magnetic Field |
title |
Nonequilibrium Dynamics of the Chiral Quark Condensate under a Strong Magnetic Field |
spellingShingle |
Nonequilibrium Dynamics of the Chiral Quark Condensate under a Strong Magnetic Field Krein, Gastao [UNESP] quantum chromodynamics chiral symmetry quark condensate quark-gluon plasma nonequilibrium dynamics |
title_short |
Nonequilibrium Dynamics of the Chiral Quark Condensate under a Strong Magnetic Field |
title_full |
Nonequilibrium Dynamics of the Chiral Quark Condensate under a Strong Magnetic Field |
title_fullStr |
Nonequilibrium Dynamics of the Chiral Quark Condensate under a Strong Magnetic Field |
title_full_unstemmed |
Nonequilibrium Dynamics of the Chiral Quark Condensate under a Strong Magnetic Field |
title_sort |
Nonequilibrium Dynamics of the Chiral Quark Condensate under a Strong Magnetic Field |
author |
Krein, Gastao [UNESP] |
author_facet |
Krein, Gastao [UNESP] Miller, Carlisson [UNESP] |
author_role |
author |
author2 |
Miller, Carlisson [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Krein, Gastao [UNESP] Miller, Carlisson [UNESP] |
dc.subject.por.fl_str_mv |
quantum chromodynamics chiral symmetry quark condensate quark-gluon plasma nonequilibrium dynamics |
topic |
quantum chromodynamics chiral symmetry quark condensate quark-gluon plasma nonequilibrium dynamics |
description |
Strong magnetic fields impact quantum-chromodynamics (QCD) properties in several situations; examples include the early universe, magnetars, and heavy-ion collisions. These examples share a common trait-time evolution. A prominent QCD property impacted by a strong magnetic field is the quark condensate, an approximate order parameter of the QCD transition between a high-temperature quark-gluon phase and a low-temperature hadronic phase. We use the linear sigma model with quarks to address the quark condensate time evolution under a strong magnetic field. We use the closed time path formalism of nonequilibrium quantum field theory to integrate out the quarks and obtain a mean-field Langevin equation for the condensate. The Langevin equation features dissipation and noise kernels controlled by a damping coefficient. We compute the damping coefficient for magnetic field and temperature values achieved in peripheral relativistic heavy-ion collisions and solve the Langevin equation for a temperature quench scenario. The magnetic field changes the dissipation and noise pattern by increasing the damping coefficient compared to the zero-field case. An increased damping coefficient increases fluctuations and time scales controlling condensate's short-time evolution, a feature that can impact hadron formation at the QCD transition. The formalism developed here can be extended to include other order parameters, hydrodynamic modes, and system's expansion to address magnetic field effects in complex settings as heavy-ion collisions, the early universe, and magnetars. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06-25T15:03:14Z 2021-06-25T15:03:14Z 2021-04-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.3390/sym13040551 Symmetry-basel. Basel: Mdpi, v. 13, n. 4, 21 p., 2021. http://hdl.handle.net/11449/210268 10.3390/sym13040551 WOS:000643637600001 |
url |
http://dx.doi.org/10.3390/sym13040551 http://hdl.handle.net/11449/210268 |
identifier_str_mv |
Symmetry-basel. Basel: Mdpi, v. 13, n. 4, 21 p., 2021. 10.3390/sym13040551 WOS:000643637600001 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Symmetry-basel |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
21 |
dc.publisher.none.fl_str_mv |
Mdpi |
publisher.none.fl_str_mv |
Mdpi |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128932179869696 |