Nonequilibrium Dynamics of the Chiral Quark Condensate under a Strong Magnetic Field

Detalhes bibliográficos
Autor(a) principal: Krein, Gastao [UNESP]
Data de Publicação: 2021
Outros Autores: Miller, Carlisson [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.3390/sym13040551
http://hdl.handle.net/11449/210268
Resumo: Strong magnetic fields impact quantum-chromodynamics (QCD) properties in several situations; examples include the early universe, magnetars, and heavy-ion collisions. These examples share a common trait-time evolution. A prominent QCD property impacted by a strong magnetic field is the quark condensate, an approximate order parameter of the QCD transition between a high-temperature quark-gluon phase and a low-temperature hadronic phase. We use the linear sigma model with quarks to address the quark condensate time evolution under a strong magnetic field. We use the closed time path formalism of nonequilibrium quantum field theory to integrate out the quarks and obtain a mean-field Langevin equation for the condensate. The Langevin equation features dissipation and noise kernels controlled by a damping coefficient. We compute the damping coefficient for magnetic field and temperature values achieved in peripheral relativistic heavy-ion collisions and solve the Langevin equation for a temperature quench scenario. The magnetic field changes the dissipation and noise pattern by increasing the damping coefficient compared to the zero-field case. An increased damping coefficient increases fluctuations and time scales controlling condensate's short-time evolution, a feature that can impact hadron formation at the QCD transition. The formalism developed here can be extended to include other order parameters, hydrodynamic modes, and system's expansion to address magnetic field effects in complex settings as heavy-ion collisions, the early universe, and magnetars.
id UNSP_5b51fb9e106d01dbb531a1e524dca7ae
oai_identifier_str oai:repositorio.unesp.br:11449/210268
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Nonequilibrium Dynamics of the Chiral Quark Condensate under a Strong Magnetic Fieldquantum chromodynamicschiral symmetryquark condensatequark-gluon plasmanonequilibrium dynamicsStrong magnetic fields impact quantum-chromodynamics (QCD) properties in several situations; examples include the early universe, magnetars, and heavy-ion collisions. These examples share a common trait-time evolution. A prominent QCD property impacted by a strong magnetic field is the quark condensate, an approximate order parameter of the QCD transition between a high-temperature quark-gluon phase and a low-temperature hadronic phase. We use the linear sigma model with quarks to address the quark condensate time evolution under a strong magnetic field. We use the closed time path formalism of nonequilibrium quantum field theory to integrate out the quarks and obtain a mean-field Langevin equation for the condensate. The Langevin equation features dissipation and noise kernels controlled by a damping coefficient. We compute the damping coefficient for magnetic field and temperature values achieved in peripheral relativistic heavy-ion collisions and solve the Langevin equation for a temperature quench scenario. The magnetic field changes the dissipation and noise pattern by increasing the damping coefficient compared to the zero-field case. An increased damping coefficient increases fluctuations and time scales controlling condensate's short-time evolution, a feature that can impact hadron formation at the QCD transition. The formalism developed here can be extended to include other order parameters, hydrodynamic modes, and system's expansion to address magnetic field effects in complex settings as heavy-ion collisions, the early universe, and magnetars.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Univ Estadual Paulista, Inst Fis Teor, Rua Dr Bento Teobaldo Ferraz 271 Bloco 2, BR-01140070 Sao Paulo, SP, BrazilUniv Estadual Paulista, Inst Fis Teor, Rua Dr Bento Teobaldo Ferraz 271 Bloco 2, BR-01140070 Sao Paulo, SP, BrazilCNPq: 309262/2019-4CNPq: 464898/2014-5FAPESP: 2018/252259MdpiUniversidade Estadual Paulista (Unesp)Krein, Gastao [UNESP]Miller, Carlisson [UNESP]2021-06-25T15:03:14Z2021-06-25T15:03:14Z2021-04-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article21http://dx.doi.org/10.3390/sym13040551Symmetry-basel. Basel: Mdpi, v. 13, n. 4, 21 p., 2021.http://hdl.handle.net/11449/21026810.3390/sym13040551WOS:000643637600001Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengSymmetry-baselinfo:eu-repo/semantics/openAccess2021-10-23T20:17:26Zoai:repositorio.unesp.br:11449/210268Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:26:18.952360Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Nonequilibrium Dynamics of the Chiral Quark Condensate under a Strong Magnetic Field
title Nonequilibrium Dynamics of the Chiral Quark Condensate under a Strong Magnetic Field
spellingShingle Nonequilibrium Dynamics of the Chiral Quark Condensate under a Strong Magnetic Field
Krein, Gastao [UNESP]
quantum chromodynamics
chiral symmetry
quark condensate
quark-gluon plasma
nonequilibrium dynamics
title_short Nonequilibrium Dynamics of the Chiral Quark Condensate under a Strong Magnetic Field
title_full Nonequilibrium Dynamics of the Chiral Quark Condensate under a Strong Magnetic Field
title_fullStr Nonequilibrium Dynamics of the Chiral Quark Condensate under a Strong Magnetic Field
title_full_unstemmed Nonequilibrium Dynamics of the Chiral Quark Condensate under a Strong Magnetic Field
title_sort Nonequilibrium Dynamics of the Chiral Quark Condensate under a Strong Magnetic Field
author Krein, Gastao [UNESP]
author_facet Krein, Gastao [UNESP]
Miller, Carlisson [UNESP]
author_role author
author2 Miller, Carlisson [UNESP]
author2_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Krein, Gastao [UNESP]
Miller, Carlisson [UNESP]
dc.subject.por.fl_str_mv quantum chromodynamics
chiral symmetry
quark condensate
quark-gluon plasma
nonequilibrium dynamics
topic quantum chromodynamics
chiral symmetry
quark condensate
quark-gluon plasma
nonequilibrium dynamics
description Strong magnetic fields impact quantum-chromodynamics (QCD) properties in several situations; examples include the early universe, magnetars, and heavy-ion collisions. These examples share a common trait-time evolution. A prominent QCD property impacted by a strong magnetic field is the quark condensate, an approximate order parameter of the QCD transition between a high-temperature quark-gluon phase and a low-temperature hadronic phase. We use the linear sigma model with quarks to address the quark condensate time evolution under a strong magnetic field. We use the closed time path formalism of nonequilibrium quantum field theory to integrate out the quarks and obtain a mean-field Langevin equation for the condensate. The Langevin equation features dissipation and noise kernels controlled by a damping coefficient. We compute the damping coefficient for magnetic field and temperature values achieved in peripheral relativistic heavy-ion collisions and solve the Langevin equation for a temperature quench scenario. The magnetic field changes the dissipation and noise pattern by increasing the damping coefficient compared to the zero-field case. An increased damping coefficient increases fluctuations and time scales controlling condensate's short-time evolution, a feature that can impact hadron formation at the QCD transition. The formalism developed here can be extended to include other order parameters, hydrodynamic modes, and system's expansion to address magnetic field effects in complex settings as heavy-ion collisions, the early universe, and magnetars.
publishDate 2021
dc.date.none.fl_str_mv 2021-06-25T15:03:14Z
2021-06-25T15:03:14Z
2021-04-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.3390/sym13040551
Symmetry-basel. Basel: Mdpi, v. 13, n. 4, 21 p., 2021.
http://hdl.handle.net/11449/210268
10.3390/sym13040551
WOS:000643637600001
url http://dx.doi.org/10.3390/sym13040551
http://hdl.handle.net/11449/210268
identifier_str_mv Symmetry-basel. Basel: Mdpi, v. 13, n. 4, 21 p., 2021.
10.3390/sym13040551
WOS:000643637600001
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Symmetry-basel
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 21
dc.publisher.none.fl_str_mv Mdpi
publisher.none.fl_str_mv Mdpi
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128932179869696