Efficient forecast system for distributed generators with uncertainties in the primary energy source

Detalhes bibliográficos
Autor(a) principal: Rueda-Medina, Augusto C. [UNESP]
Data de Publicação: 2013
Outros Autores: Padilha-Feltrin, Antonio [UNESP], Mantovani, J. R.S. [UNESP]
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1049/cp.2013.0633
http://hdl.handle.net/11449/232262
Resumo: A high degree of variability reduces the available capability of Distributed Generators (DGs) based on renewable energy sources because their power output is uncertain. To determine the true available capability of this kind of DG, this uncertainty must be reduced so that these DGs can be regarded as a reliable alternative. In this work, an efficient forecast system for DGs with uncertainties in the primary energy source is proposed. The power generation uncertainty of these DGs is reduced by running a multiobjective optimization algorithm in multiple probabilistic scenarios combining the Monte Carlo method and the Markov models.
id UNSP_5b7cdde0ab9bb862c8ccf8aaff2d5468
oai_identifier_str oai:repositorio.unesp.br:11449/232262
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Efficient forecast system for distributed generators with uncertainties in the primary energy sourceA high degree of variability reduces the available capability of Distributed Generators (DGs) based on renewable energy sources because their power output is uncertain. To determine the true available capability of this kind of DG, this uncertainty must be reduced so that these DGs can be regarded as a reliable alternative. In this work, an efficient forecast system for DGs with uncertainties in the primary energy source is proposed. The power generation uncertainty of these DGs is reduced by running a multiobjective optimization algorithm in multiple probabilistic scenarios combining the Monte Carlo method and the Markov models.UNESP, Ilha SolteiraUNESP, Ilha SolteiraUniversidade Estadual Paulista (UNESP)Rueda-Medina, Augusto C. [UNESP]Padilha-Feltrin, Antonio [UNESP]Mantovani, J. R.S. [UNESP]2022-04-29T09:35:26Z2022-04-29T09:35:26Z2013-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.1049/cp.2013.0633IET Conference Publications, v. 2013, n. 615 CP, 2013.http://hdl.handle.net/11449/23226210.1049/cp.2013.06332-s2.0-84897626194Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengIET Conference Publicationsinfo:eu-repo/semantics/openAccess2024-07-04T19:11:27Zoai:repositorio.unesp.br:11449/232262Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:31:41.448946Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Efficient forecast system for distributed generators with uncertainties in the primary energy source
title Efficient forecast system for distributed generators with uncertainties in the primary energy source
spellingShingle Efficient forecast system for distributed generators with uncertainties in the primary energy source
Rueda-Medina, Augusto C. [UNESP]
title_short Efficient forecast system for distributed generators with uncertainties in the primary energy source
title_full Efficient forecast system for distributed generators with uncertainties in the primary energy source
title_fullStr Efficient forecast system for distributed generators with uncertainties in the primary energy source
title_full_unstemmed Efficient forecast system for distributed generators with uncertainties in the primary energy source
title_sort Efficient forecast system for distributed generators with uncertainties in the primary energy source
author Rueda-Medina, Augusto C. [UNESP]
author_facet Rueda-Medina, Augusto C. [UNESP]
Padilha-Feltrin, Antonio [UNESP]
Mantovani, J. R.S. [UNESP]
author_role author
author2 Padilha-Feltrin, Antonio [UNESP]
Mantovani, J. R.S. [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Rueda-Medina, Augusto C. [UNESP]
Padilha-Feltrin, Antonio [UNESP]
Mantovani, J. R.S. [UNESP]
description A high degree of variability reduces the available capability of Distributed Generators (DGs) based on renewable energy sources because their power output is uncertain. To determine the true available capability of this kind of DG, this uncertainty must be reduced so that these DGs can be regarded as a reliable alternative. In this work, an efficient forecast system for DGs with uncertainties in the primary energy source is proposed. The power generation uncertainty of these DGs is reduced by running a multiobjective optimization algorithm in multiple probabilistic scenarios combining the Monte Carlo method and the Markov models.
publishDate 2013
dc.date.none.fl_str_mv 2013-12-01
2022-04-29T09:35:26Z
2022-04-29T09:35:26Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1049/cp.2013.0633
IET Conference Publications, v. 2013, n. 615 CP, 2013.
http://hdl.handle.net/11449/232262
10.1049/cp.2013.0633
2-s2.0-84897626194
url http://dx.doi.org/10.1049/cp.2013.0633
http://hdl.handle.net/11449/232262
identifier_str_mv IET Conference Publications, v. 2013, n. 615 CP, 2013.
10.1049/cp.2013.0633
2-s2.0-84897626194
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv IET Conference Publications
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128526688190464