Model comparisons for genetic evaluation of gait type in Mangalarga Marchador horses

Detalhes bibliográficos
Autor(a) principal: Bussiman, Fernando de Oliveira
Data de Publicação: 2020
Outros Autores: Silva, Fabyano Fonseca e, Carvalho, Rachel Santos Bueno, Ventura, Ricardo Vieira, de Oliveira, Henrique Nunes [UNESP], Abreu Silva, Bárbara da Conceição, Fonseca, Mayara Gonçalves [UNESP], dos Santos, Bruna Aparecida [UNESP], Pereira, Guilherme Luis [UNESP], Eler, Joanir Pereira, Ferraz, José Bento Sterman, Mattos, Elisângela Chicaroni, Curi, Rogério Abdallah [UNESP], Balieiro, Júlio Cesar de Carvalho
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.livsci.2020.104168
http://hdl.handle.net/11449/200765
Resumo: Mangalarga Marchador (MM) is a very important Brazilian gaited horse breed. These animals show two gait types, differing in proportion of lateral or diagonal movements. Thus, it is possible to consider the gait type as a binary categorical trait in our statistical models. Threshold models (TM) are strongly recommended to handle binary traits for genetic evaluation purposes. However, TM are susceptible to the extreme categorical problem (ECP). ECP is usually observed due to the absence of variation within subclasses for a given systematic effect and can be avoided after handling this effect as random or by combining different systematic effects in the model. In this context, we aimed to find the most suitable systematic effect (based on goodness-of-fit and predictive ability) to be included in Bayesian threshold model for the genetic evaluation of gait type in MM horses. The dataset consisted of 1,231 gait type records and 3,172 animals in the pedigree file. Phenotypic record associated with gait type was treated as a categorical trait (MP = 0 and MB = 1). In summary, models with small complexity were benefited by smaller bias and average prediction errors. Additionally, these models showed higher heritability estimates. ECP was an important issue, and should always be approached when using threshold models for genetic evaluation.
id UNSP_5bb3830c4d46280d275d167529ef3d05
oai_identifier_str oai:repositorio.unesp.br:11449/200765
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Model comparisons for genetic evaluation of gait type in Mangalarga Marchador horsesBayesian inferenceExtreme categorical problemGaited horseThreshold modelsMangalarga Marchador (MM) is a very important Brazilian gaited horse breed. These animals show two gait types, differing in proportion of lateral or diagonal movements. Thus, it is possible to consider the gait type as a binary categorical trait in our statistical models. Threshold models (TM) are strongly recommended to handle binary traits for genetic evaluation purposes. However, TM are susceptible to the extreme categorical problem (ECP). ECP is usually observed due to the absence of variation within subclasses for a given systematic effect and can be avoided after handling this effect as random or by combining different systematic effects in the model. In this context, we aimed to find the most suitable systematic effect (based on goodness-of-fit and predictive ability) to be included in Bayesian threshold model for the genetic evaluation of gait type in MM horses. The dataset consisted of 1,231 gait type records and 3,172 animals in the pedigree file. Phenotypic record associated with gait type was treated as a categorical trait (MP = 0 and MB = 1). In summary, models with small complexity were benefited by smaller bias and average prediction errors. Additionally, these models showed higher heritability estimates. ECP was an important issue, and should always be approached when using threshold models for genetic evaluation.Bioinformatic and Animal Breeding Lab. Department of Animal Nutrition and Production College of Veterinary Medicine and Animal Science University of São Paulo (VNP-FMVZ/USP), Av. Duque de Caxias Norte, 225, 13.635-900Department of Animal Science Federal University of Viçosa (DZO-UFV), Av. P H Rolfs, s/n, 36.570-900Department of Basic Sciences College of Animal Science and Food Engineering University of São Paulo (ZAB-FZEA/USP), Av. Duque de Caxias Norte, 225, 13.635-900Department of Animal Science College of Agricultural and Veterinary Sciences São Paulo State University (FCAV/UNESP), Via de Acesso Prof. Paulo Donato Castellane s/n, 14.884-900Group of Animal Breeding and Biotechnology Department of Veterinary Medicine College of Animal Science and Food Engineering University of São Paulo (GMAB/ZMV-FZEA/USP), Av. Duque de Caxias Norte, 225, 13.635-900Department of Morphology and Animal Physiology College of Agriculture and Veterinary Science São Paulo State University (FCAV/UNESP), access route Paulo Donato CastellaneDepartment of Animal Improvement and Nutrition College of Veterinary Medicine and Animal Science São Paulo State University (FMVZ/UNESP), Rua José Barbosa de Barros, 1780, Fazenda Experimental Lageado, 18.618-307Department of Animal Science College of Agricultural and Veterinary Sciences São Paulo State University (FCAV/UNESP), Via de Acesso Prof. Paulo Donato Castellane s/n, 14.884-900Department of Morphology and Animal Physiology College of Agriculture and Veterinary Science São Paulo State University (FCAV/UNESP), access route Paulo Donato CastellaneDepartment of Animal Improvement and Nutrition College of Veterinary Medicine and Animal Science São Paulo State University (FMVZ/UNESP), Rua José Barbosa de Barros, 1780, Fazenda Experimental Lageado, 18.618-307Universidade de São Paulo (USP)Universidade Federal de Viçosa (UFV)Universidade Estadual Paulista (Unesp)Bussiman, Fernando de OliveiraSilva, Fabyano Fonseca eCarvalho, Rachel Santos BuenoVentura, Ricardo Vieirade Oliveira, Henrique Nunes [UNESP]Abreu Silva, Bárbara da ConceiçãoFonseca, Mayara Gonçalves [UNESP]dos Santos, Bruna Aparecida [UNESP]Pereira, Guilherme Luis [UNESP]Eler, Joanir PereiraFerraz, José Bento StermanMattos, Elisângela ChicaroniCuri, Rogério Abdallah [UNESP]Balieiro, Júlio Cesar de Carvalho2020-12-12T02:15:28Z2020-12-12T02:15:28Z2020-09-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1016/j.livsci.2020.104168Livestock Science, v. 239.1871-1413http://hdl.handle.net/11449/20076510.1016/j.livsci.2020.1041682-s2.0-8508804508535147134139191260000-0001-6289-0406Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengLivestock Scienceinfo:eu-repo/semantics/openAccess2024-06-07T18:44:29Zoai:repositorio.unesp.br:11449/200765Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:35:24.137809Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Model comparisons for genetic evaluation of gait type in Mangalarga Marchador horses
title Model comparisons for genetic evaluation of gait type in Mangalarga Marchador horses
spellingShingle Model comparisons for genetic evaluation of gait type in Mangalarga Marchador horses
Bussiman, Fernando de Oliveira
Bayesian inference
Extreme categorical problem
Gaited horse
Threshold models
title_short Model comparisons for genetic evaluation of gait type in Mangalarga Marchador horses
title_full Model comparisons for genetic evaluation of gait type in Mangalarga Marchador horses
title_fullStr Model comparisons for genetic evaluation of gait type in Mangalarga Marchador horses
title_full_unstemmed Model comparisons for genetic evaluation of gait type in Mangalarga Marchador horses
title_sort Model comparisons for genetic evaluation of gait type in Mangalarga Marchador horses
author Bussiman, Fernando de Oliveira
author_facet Bussiman, Fernando de Oliveira
Silva, Fabyano Fonseca e
Carvalho, Rachel Santos Bueno
Ventura, Ricardo Vieira
de Oliveira, Henrique Nunes [UNESP]
Abreu Silva, Bárbara da Conceição
Fonseca, Mayara Gonçalves [UNESP]
dos Santos, Bruna Aparecida [UNESP]
Pereira, Guilherme Luis [UNESP]
Eler, Joanir Pereira
Ferraz, José Bento Sterman
Mattos, Elisângela Chicaroni
Curi, Rogério Abdallah [UNESP]
Balieiro, Júlio Cesar de Carvalho
author_role author
author2 Silva, Fabyano Fonseca e
Carvalho, Rachel Santos Bueno
Ventura, Ricardo Vieira
de Oliveira, Henrique Nunes [UNESP]
Abreu Silva, Bárbara da Conceição
Fonseca, Mayara Gonçalves [UNESP]
dos Santos, Bruna Aparecida [UNESP]
Pereira, Guilherme Luis [UNESP]
Eler, Joanir Pereira
Ferraz, José Bento Sterman
Mattos, Elisângela Chicaroni
Curi, Rogério Abdallah [UNESP]
Balieiro, Júlio Cesar de Carvalho
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade de São Paulo (USP)
Universidade Federal de Viçosa (UFV)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Bussiman, Fernando de Oliveira
Silva, Fabyano Fonseca e
Carvalho, Rachel Santos Bueno
Ventura, Ricardo Vieira
de Oliveira, Henrique Nunes [UNESP]
Abreu Silva, Bárbara da Conceição
Fonseca, Mayara Gonçalves [UNESP]
dos Santos, Bruna Aparecida [UNESP]
Pereira, Guilherme Luis [UNESP]
Eler, Joanir Pereira
Ferraz, José Bento Sterman
Mattos, Elisângela Chicaroni
Curi, Rogério Abdallah [UNESP]
Balieiro, Júlio Cesar de Carvalho
dc.subject.por.fl_str_mv Bayesian inference
Extreme categorical problem
Gaited horse
Threshold models
topic Bayesian inference
Extreme categorical problem
Gaited horse
Threshold models
description Mangalarga Marchador (MM) is a very important Brazilian gaited horse breed. These animals show two gait types, differing in proportion of lateral or diagonal movements. Thus, it is possible to consider the gait type as a binary categorical trait in our statistical models. Threshold models (TM) are strongly recommended to handle binary traits for genetic evaluation purposes. However, TM are susceptible to the extreme categorical problem (ECP). ECP is usually observed due to the absence of variation within subclasses for a given systematic effect and can be avoided after handling this effect as random or by combining different systematic effects in the model. In this context, we aimed to find the most suitable systematic effect (based on goodness-of-fit and predictive ability) to be included in Bayesian threshold model for the genetic evaluation of gait type in MM horses. The dataset consisted of 1,231 gait type records and 3,172 animals in the pedigree file. Phenotypic record associated with gait type was treated as a categorical trait (MP = 0 and MB = 1). In summary, models with small complexity were benefited by smaller bias and average prediction errors. Additionally, these models showed higher heritability estimates. ECP was an important issue, and should always be approached when using threshold models for genetic evaluation.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-12T02:15:28Z
2020-12-12T02:15:28Z
2020-09-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.livsci.2020.104168
Livestock Science, v. 239.
1871-1413
http://hdl.handle.net/11449/200765
10.1016/j.livsci.2020.104168
2-s2.0-85088045085
3514713413919126
0000-0001-6289-0406
url http://dx.doi.org/10.1016/j.livsci.2020.104168
http://hdl.handle.net/11449/200765
identifier_str_mv Livestock Science, v. 239.
1871-1413
10.1016/j.livsci.2020.104168
2-s2.0-85088045085
3514713413919126
0000-0001-6289-0406
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Livestock Science
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129440976207872