Radial basis function networks with quantized parameters

Detalhes bibliográficos
Autor(a) principal: Lucks, Marcio B. [UNESP]
Data de Publicação: 2008
Outros Autores: Nobuo, Oki [UNESP]
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/CIMSA.2008.4595826
http://hdl.handle.net/11449/70591
Resumo: A RBFN implemented with quantized parameters is proposed and the relative or limited approximation property is presented. Simulation results for sinusoidal function approximation with various quantization levels are shown. The results indicate that the network presents good approximation capability even with severe quantization. The parameter quantization decreases the memory size and circuit complexity required to store the network parameters leading to compact mixed-signal circuits proper for low-power applications. ©2008 IEEE.
id UNSP_5bc8d32551d69689f8e2aec6ccbc68a1
oai_identifier_str oai:repositorio.unesp.br:11449/70591
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Radial basis function networks with quantized parametersFunction approximationQuantized parametersRadial basis function networkArtificial intelligenceChlorine compoundsFeedforward neural networksIntelligent controlNetworks (circuits)Polynomial approximationApproximation propertiesCircuit complexityComputational intelligenceInternational conferencesLow-power applicationsMeasurement systemsMemory sizeMixed-signal circuitsNetwork parametersQuantization levelsSimulation resultsSinusoidal functionsRadial basis function networksA RBFN implemented with quantized parameters is proposed and the relative or limited approximation property is presented. Simulation results for sinusoidal function approximation with various quantization levels are shown. The results indicate that the network presents good approximation capability even with severe quantization. The parameter quantization decreases the memory size and circuit complexity required to store the network parameters leading to compact mixed-signal circuits proper for low-power applications. ©2008 IEEE.UNESP (Universidade Estadual Paulista), Av. Brasil Norte, 364, Ilha Solteira, SPUNESP (Universidade Estadual Paulista), Av. Brasil Norte, 364, Ilha Solteira, SPUniversidade Estadual Paulista (Unesp)Lucks, Marcio B. [UNESP]Nobuo, Oki [UNESP]2014-05-27T11:23:40Z2014-05-27T11:23:40Z2008-09-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject23-27http://dx.doi.org/10.1109/CIMSA.2008.4595826CIMSA 2008 - IEEE Conference on Computational Intelligence for Measurement Systems and Applications Proceedings, p. 23-27.http://hdl.handle.net/11449/7059110.1109/CIMSA.2008.4595826WOS:0002594434000062-s2.0-52449111383Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengCIMSA 2008 - IEEE Conference on Computational Intelligence for Measurement Systems and Applications Proceedingsinfo:eu-repo/semantics/openAccess2021-10-23T21:37:56Zoai:repositorio.unesp.br:11449/70591Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:47:04.170187Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Radial basis function networks with quantized parameters
title Radial basis function networks with quantized parameters
spellingShingle Radial basis function networks with quantized parameters
Lucks, Marcio B. [UNESP]
Function approximation
Quantized parameters
Radial basis function network
Artificial intelligence
Chlorine compounds
Feedforward neural networks
Intelligent control
Networks (circuits)
Polynomial approximation
Approximation properties
Circuit complexity
Computational intelligence
International conferences
Low-power applications
Measurement systems
Memory size
Mixed-signal circuits
Network parameters
Quantization levels
Simulation results
Sinusoidal functions
Radial basis function networks
title_short Radial basis function networks with quantized parameters
title_full Radial basis function networks with quantized parameters
title_fullStr Radial basis function networks with quantized parameters
title_full_unstemmed Radial basis function networks with quantized parameters
title_sort Radial basis function networks with quantized parameters
author Lucks, Marcio B. [UNESP]
author_facet Lucks, Marcio B. [UNESP]
Nobuo, Oki [UNESP]
author_role author
author2 Nobuo, Oki [UNESP]
author2_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Lucks, Marcio B. [UNESP]
Nobuo, Oki [UNESP]
dc.subject.por.fl_str_mv Function approximation
Quantized parameters
Radial basis function network
Artificial intelligence
Chlorine compounds
Feedforward neural networks
Intelligent control
Networks (circuits)
Polynomial approximation
Approximation properties
Circuit complexity
Computational intelligence
International conferences
Low-power applications
Measurement systems
Memory size
Mixed-signal circuits
Network parameters
Quantization levels
Simulation results
Sinusoidal functions
Radial basis function networks
topic Function approximation
Quantized parameters
Radial basis function network
Artificial intelligence
Chlorine compounds
Feedforward neural networks
Intelligent control
Networks (circuits)
Polynomial approximation
Approximation properties
Circuit complexity
Computational intelligence
International conferences
Low-power applications
Measurement systems
Memory size
Mixed-signal circuits
Network parameters
Quantization levels
Simulation results
Sinusoidal functions
Radial basis function networks
description A RBFN implemented with quantized parameters is proposed and the relative or limited approximation property is presented. Simulation results for sinusoidal function approximation with various quantization levels are shown. The results indicate that the network presents good approximation capability even with severe quantization. The parameter quantization decreases the memory size and circuit complexity required to store the network parameters leading to compact mixed-signal circuits proper for low-power applications. ©2008 IEEE.
publishDate 2008
dc.date.none.fl_str_mv 2008-09-30
2014-05-27T11:23:40Z
2014-05-27T11:23:40Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/CIMSA.2008.4595826
CIMSA 2008 - IEEE Conference on Computational Intelligence for Measurement Systems and Applications Proceedings, p. 23-27.
http://hdl.handle.net/11449/70591
10.1109/CIMSA.2008.4595826
WOS:000259443400006
2-s2.0-52449111383
url http://dx.doi.org/10.1109/CIMSA.2008.4595826
http://hdl.handle.net/11449/70591
identifier_str_mv CIMSA 2008 - IEEE Conference on Computational Intelligence for Measurement Systems and Applications Proceedings, p. 23-27.
10.1109/CIMSA.2008.4595826
WOS:000259443400006
2-s2.0-52449111383
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv CIMSA 2008 - IEEE Conference on Computational Intelligence for Measurement Systems and Applications Proceedings
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 23-27
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129248212287488