Radial basis function networks with quantized parameters
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/CIMSA.2008.4595826 http://hdl.handle.net/11449/70591 |
Resumo: | A RBFN implemented with quantized parameters is proposed and the relative or limited approximation property is presented. Simulation results for sinusoidal function approximation with various quantization levels are shown. The results indicate that the network presents good approximation capability even with severe quantization. The parameter quantization decreases the memory size and circuit complexity required to store the network parameters leading to compact mixed-signal circuits proper for low-power applications. ©2008 IEEE. |
id |
UNSP_5bc8d32551d69689f8e2aec6ccbc68a1 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/70591 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Radial basis function networks with quantized parametersFunction approximationQuantized parametersRadial basis function networkArtificial intelligenceChlorine compoundsFeedforward neural networksIntelligent controlNetworks (circuits)Polynomial approximationApproximation propertiesCircuit complexityComputational intelligenceInternational conferencesLow-power applicationsMeasurement systemsMemory sizeMixed-signal circuitsNetwork parametersQuantization levelsSimulation resultsSinusoidal functionsRadial basis function networksA RBFN implemented with quantized parameters is proposed and the relative or limited approximation property is presented. Simulation results for sinusoidal function approximation with various quantization levels are shown. The results indicate that the network presents good approximation capability even with severe quantization. The parameter quantization decreases the memory size and circuit complexity required to store the network parameters leading to compact mixed-signal circuits proper for low-power applications. ©2008 IEEE.UNESP (Universidade Estadual Paulista), Av. Brasil Norte, 364, Ilha Solteira, SPUNESP (Universidade Estadual Paulista), Av. Brasil Norte, 364, Ilha Solteira, SPUniversidade Estadual Paulista (Unesp)Lucks, Marcio B. [UNESP]Nobuo, Oki [UNESP]2014-05-27T11:23:40Z2014-05-27T11:23:40Z2008-09-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject23-27http://dx.doi.org/10.1109/CIMSA.2008.4595826CIMSA 2008 - IEEE Conference on Computational Intelligence for Measurement Systems and Applications Proceedings, p. 23-27.http://hdl.handle.net/11449/7059110.1109/CIMSA.2008.4595826WOS:0002594434000062-s2.0-52449111383Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengCIMSA 2008 - IEEE Conference on Computational Intelligence for Measurement Systems and Applications Proceedingsinfo:eu-repo/semantics/openAccess2021-10-23T21:37:56Zoai:repositorio.unesp.br:11449/70591Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:47:04.170187Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Radial basis function networks with quantized parameters |
title |
Radial basis function networks with quantized parameters |
spellingShingle |
Radial basis function networks with quantized parameters Lucks, Marcio B. [UNESP] Function approximation Quantized parameters Radial basis function network Artificial intelligence Chlorine compounds Feedforward neural networks Intelligent control Networks (circuits) Polynomial approximation Approximation properties Circuit complexity Computational intelligence International conferences Low-power applications Measurement systems Memory size Mixed-signal circuits Network parameters Quantization levels Simulation results Sinusoidal functions Radial basis function networks |
title_short |
Radial basis function networks with quantized parameters |
title_full |
Radial basis function networks with quantized parameters |
title_fullStr |
Radial basis function networks with quantized parameters |
title_full_unstemmed |
Radial basis function networks with quantized parameters |
title_sort |
Radial basis function networks with quantized parameters |
author |
Lucks, Marcio B. [UNESP] |
author_facet |
Lucks, Marcio B. [UNESP] Nobuo, Oki [UNESP] |
author_role |
author |
author2 |
Nobuo, Oki [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Lucks, Marcio B. [UNESP] Nobuo, Oki [UNESP] |
dc.subject.por.fl_str_mv |
Function approximation Quantized parameters Radial basis function network Artificial intelligence Chlorine compounds Feedforward neural networks Intelligent control Networks (circuits) Polynomial approximation Approximation properties Circuit complexity Computational intelligence International conferences Low-power applications Measurement systems Memory size Mixed-signal circuits Network parameters Quantization levels Simulation results Sinusoidal functions Radial basis function networks |
topic |
Function approximation Quantized parameters Radial basis function network Artificial intelligence Chlorine compounds Feedforward neural networks Intelligent control Networks (circuits) Polynomial approximation Approximation properties Circuit complexity Computational intelligence International conferences Low-power applications Measurement systems Memory size Mixed-signal circuits Network parameters Quantization levels Simulation results Sinusoidal functions Radial basis function networks |
description |
A RBFN implemented with quantized parameters is proposed and the relative or limited approximation property is presented. Simulation results for sinusoidal function approximation with various quantization levels are shown. The results indicate that the network presents good approximation capability even with severe quantization. The parameter quantization decreases the memory size and circuit complexity required to store the network parameters leading to compact mixed-signal circuits proper for low-power applications. ©2008 IEEE. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-09-30 2014-05-27T11:23:40Z 2014-05-27T11:23:40Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/CIMSA.2008.4595826 CIMSA 2008 - IEEE Conference on Computational Intelligence for Measurement Systems and Applications Proceedings, p. 23-27. http://hdl.handle.net/11449/70591 10.1109/CIMSA.2008.4595826 WOS:000259443400006 2-s2.0-52449111383 |
url |
http://dx.doi.org/10.1109/CIMSA.2008.4595826 http://hdl.handle.net/11449/70591 |
identifier_str_mv |
CIMSA 2008 - IEEE Conference on Computational Intelligence for Measurement Systems and Applications Proceedings, p. 23-27. 10.1109/CIMSA.2008.4595826 WOS:000259443400006 2-s2.0-52449111383 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
CIMSA 2008 - IEEE Conference on Computational Intelligence for Measurement Systems and Applications Proceedings |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
23-27 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129248212287488 |