An Intrusion Detection System for Web-Based Attacks Using IBM Watson

Detalhes bibliográficos
Autor(a) principal: Conde Camillo Da Silva, Ricardo [UNESP]
Data de Publicação: 2022
Outros Autores: Oliveira Camargo, Marcos Paulo [UNESP], Sanches Quessada, Matheus [UNESP], Claiton Lopes, Anderson [UNESP], Diassala Monteiro Ernesto, Jacinto [UNESP], Pontara Da Costa, Kelton Augusto [UNESP]
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/TLA.2022.9661457
http://hdl.handle.net/11449/223218
Resumo: The internet and web applications have been growing steadily and together with the increasing number of cyber attacks. These attacks are carried out through requests that are considered normal or abnormal (attack requests). Therefore, an intrusion attack can be considered as a classification problem. Machine learning algorithms are used as a way to train models to classify these requests in order to increase the security of web systems. The data used to carry out the training and tests in this work come from the CSIC 2010 dataset. The J48, Naive Bayes, OneR, Random Forest and IBM Watson LGBM algorithms were tested. The metrics used were t-rate, precision, recall and f measure. The results showed that the algorithm used by the Watson tool (LGBM) was the one that did the best in all metrics when compared to the other algorithms in the literature.
id UNSP_5bdaefa513625a1531fec9fad3846187
oai_identifier_str oai:repositorio.unesp.br:11449/223218
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling An Intrusion Detection System for Web-Based Attacks Using IBM Watsonclassificationcyber attacksIBM Watsonintrusion attackmachine learningWeb applicationsThe internet and web applications have been growing steadily and together with the increasing number of cyber attacks. These attacks are carried out through requests that are considered normal or abnormal (attack requests). Therefore, an intrusion attack can be considered as a classification problem. Machine learning algorithms are used as a way to train models to classify these requests in order to increase the security of web systems. The data used to carry out the training and tests in this work come from the CSIC 2010 dataset. The J48, Naive Bayes, OneR, Random Forest and IBM Watson LGBM algorithms were tested. The metrics used were t-rate, precision, recall and f measure. The results showed that the algorithm used by the Watson tool (LGBM) was the one that did the best in all metrics when compared to the other algorithms in the literature.Universidade Estadual Paulista São José Do Rio PretoUniversidade Estadual Paulista, São PauloUniversidade Estadual Paulista São José Do Rio PretoUniversidade Estadual Paulista, São PauloUniversidade Estadual Paulista (UNESP)Conde Camillo Da Silva, Ricardo [UNESP]Oliveira Camargo, Marcos Paulo [UNESP]Sanches Quessada, Matheus [UNESP]Claiton Lopes, Anderson [UNESP]Diassala Monteiro Ernesto, Jacinto [UNESP]Pontara Da Costa, Kelton Augusto [UNESP]2022-04-28T19:49:25Z2022-04-28T19:49:25Z2022-02-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article191-197http://dx.doi.org/10.1109/TLA.2022.9661457IEEE Latin America Transactions, v. 20, n. 2, p. 191-197, 2022.1548-0992http://hdl.handle.net/11449/22321810.1109/TLA.2022.96614572-s2.0-85122612051Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPporIEEE Latin America Transactionsinfo:eu-repo/semantics/openAccess2022-04-28T19:49:25Zoai:repositorio.unesp.br:11449/223218Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:40:11.097998Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv An Intrusion Detection System for Web-Based Attacks Using IBM Watson
title An Intrusion Detection System for Web-Based Attacks Using IBM Watson
spellingShingle An Intrusion Detection System for Web-Based Attacks Using IBM Watson
Conde Camillo Da Silva, Ricardo [UNESP]
classification
cyber attacks
IBM Watson
intrusion attack
machine learning
Web applications
title_short An Intrusion Detection System for Web-Based Attacks Using IBM Watson
title_full An Intrusion Detection System for Web-Based Attacks Using IBM Watson
title_fullStr An Intrusion Detection System for Web-Based Attacks Using IBM Watson
title_full_unstemmed An Intrusion Detection System for Web-Based Attacks Using IBM Watson
title_sort An Intrusion Detection System for Web-Based Attacks Using IBM Watson
author Conde Camillo Da Silva, Ricardo [UNESP]
author_facet Conde Camillo Da Silva, Ricardo [UNESP]
Oliveira Camargo, Marcos Paulo [UNESP]
Sanches Quessada, Matheus [UNESP]
Claiton Lopes, Anderson [UNESP]
Diassala Monteiro Ernesto, Jacinto [UNESP]
Pontara Da Costa, Kelton Augusto [UNESP]
author_role author
author2 Oliveira Camargo, Marcos Paulo [UNESP]
Sanches Quessada, Matheus [UNESP]
Claiton Lopes, Anderson [UNESP]
Diassala Monteiro Ernesto, Jacinto [UNESP]
Pontara Da Costa, Kelton Augusto [UNESP]
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Conde Camillo Da Silva, Ricardo [UNESP]
Oliveira Camargo, Marcos Paulo [UNESP]
Sanches Quessada, Matheus [UNESP]
Claiton Lopes, Anderson [UNESP]
Diassala Monteiro Ernesto, Jacinto [UNESP]
Pontara Da Costa, Kelton Augusto [UNESP]
dc.subject.por.fl_str_mv classification
cyber attacks
IBM Watson
intrusion attack
machine learning
Web applications
topic classification
cyber attacks
IBM Watson
intrusion attack
machine learning
Web applications
description The internet and web applications have been growing steadily and together with the increasing number of cyber attacks. These attacks are carried out through requests that are considered normal or abnormal (attack requests). Therefore, an intrusion attack can be considered as a classification problem. Machine learning algorithms are used as a way to train models to classify these requests in order to increase the security of web systems. The data used to carry out the training and tests in this work come from the CSIC 2010 dataset. The J48, Naive Bayes, OneR, Random Forest and IBM Watson LGBM algorithms were tested. The metrics used were t-rate, precision, recall and f measure. The results showed that the algorithm used by the Watson tool (LGBM) was the one that did the best in all metrics when compared to the other algorithms in the literature.
publishDate 2022
dc.date.none.fl_str_mv 2022-04-28T19:49:25Z
2022-04-28T19:49:25Z
2022-02-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/TLA.2022.9661457
IEEE Latin America Transactions, v. 20, n. 2, p. 191-197, 2022.
1548-0992
http://hdl.handle.net/11449/223218
10.1109/TLA.2022.9661457
2-s2.0-85122612051
url http://dx.doi.org/10.1109/TLA.2022.9661457
http://hdl.handle.net/11449/223218
identifier_str_mv IEEE Latin America Transactions, v. 20, n. 2, p. 191-197, 2022.
1548-0992
10.1109/TLA.2022.9661457
2-s2.0-85122612051
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv IEEE Latin America Transactions
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 191-197
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129448754544640