An Intrusion Detection System for Web-Based Attacks Using IBM Watson
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/TLA.2022.9661457 http://hdl.handle.net/11449/223218 |
Resumo: | The internet and web applications have been growing steadily and together with the increasing number of cyber attacks. These attacks are carried out through requests that are considered normal or abnormal (attack requests). Therefore, an intrusion attack can be considered as a classification problem. Machine learning algorithms are used as a way to train models to classify these requests in order to increase the security of web systems. The data used to carry out the training and tests in this work come from the CSIC 2010 dataset. The J48, Naive Bayes, OneR, Random Forest and IBM Watson LGBM algorithms were tested. The metrics used were t-rate, precision, recall and f measure. The results showed that the algorithm used by the Watson tool (LGBM) was the one that did the best in all metrics when compared to the other algorithms in the literature. |
id |
UNSP_5bdaefa513625a1531fec9fad3846187 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/223218 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
An Intrusion Detection System for Web-Based Attacks Using IBM Watsonclassificationcyber attacksIBM Watsonintrusion attackmachine learningWeb applicationsThe internet and web applications have been growing steadily and together with the increasing number of cyber attacks. These attacks are carried out through requests that are considered normal or abnormal (attack requests). Therefore, an intrusion attack can be considered as a classification problem. Machine learning algorithms are used as a way to train models to classify these requests in order to increase the security of web systems. The data used to carry out the training and tests in this work come from the CSIC 2010 dataset. The J48, Naive Bayes, OneR, Random Forest and IBM Watson LGBM algorithms were tested. The metrics used were t-rate, precision, recall and f measure. The results showed that the algorithm used by the Watson tool (LGBM) was the one that did the best in all metrics when compared to the other algorithms in the literature.Universidade Estadual Paulista São José Do Rio PretoUniversidade Estadual Paulista, São PauloUniversidade Estadual Paulista São José Do Rio PretoUniversidade Estadual Paulista, São PauloUniversidade Estadual Paulista (UNESP)Conde Camillo Da Silva, Ricardo [UNESP]Oliveira Camargo, Marcos Paulo [UNESP]Sanches Quessada, Matheus [UNESP]Claiton Lopes, Anderson [UNESP]Diassala Monteiro Ernesto, Jacinto [UNESP]Pontara Da Costa, Kelton Augusto [UNESP]2022-04-28T19:49:25Z2022-04-28T19:49:25Z2022-02-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article191-197http://dx.doi.org/10.1109/TLA.2022.9661457IEEE Latin America Transactions, v. 20, n. 2, p. 191-197, 2022.1548-0992http://hdl.handle.net/11449/22321810.1109/TLA.2022.96614572-s2.0-85122612051Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPporIEEE Latin America Transactionsinfo:eu-repo/semantics/openAccess2022-04-28T19:49:25Zoai:repositorio.unesp.br:11449/223218Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:40:11.097998Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
An Intrusion Detection System for Web-Based Attacks Using IBM Watson |
title |
An Intrusion Detection System for Web-Based Attacks Using IBM Watson |
spellingShingle |
An Intrusion Detection System for Web-Based Attacks Using IBM Watson Conde Camillo Da Silva, Ricardo [UNESP] classification cyber attacks IBM Watson intrusion attack machine learning Web applications |
title_short |
An Intrusion Detection System for Web-Based Attacks Using IBM Watson |
title_full |
An Intrusion Detection System for Web-Based Attacks Using IBM Watson |
title_fullStr |
An Intrusion Detection System for Web-Based Attacks Using IBM Watson |
title_full_unstemmed |
An Intrusion Detection System for Web-Based Attacks Using IBM Watson |
title_sort |
An Intrusion Detection System for Web-Based Attacks Using IBM Watson |
author |
Conde Camillo Da Silva, Ricardo [UNESP] |
author_facet |
Conde Camillo Da Silva, Ricardo [UNESP] Oliveira Camargo, Marcos Paulo [UNESP] Sanches Quessada, Matheus [UNESP] Claiton Lopes, Anderson [UNESP] Diassala Monteiro Ernesto, Jacinto [UNESP] Pontara Da Costa, Kelton Augusto [UNESP] |
author_role |
author |
author2 |
Oliveira Camargo, Marcos Paulo [UNESP] Sanches Quessada, Matheus [UNESP] Claiton Lopes, Anderson [UNESP] Diassala Monteiro Ernesto, Jacinto [UNESP] Pontara Da Costa, Kelton Augusto [UNESP] |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Conde Camillo Da Silva, Ricardo [UNESP] Oliveira Camargo, Marcos Paulo [UNESP] Sanches Quessada, Matheus [UNESP] Claiton Lopes, Anderson [UNESP] Diassala Monteiro Ernesto, Jacinto [UNESP] Pontara Da Costa, Kelton Augusto [UNESP] |
dc.subject.por.fl_str_mv |
classification cyber attacks IBM Watson intrusion attack machine learning Web applications |
topic |
classification cyber attacks IBM Watson intrusion attack machine learning Web applications |
description |
The internet and web applications have been growing steadily and together with the increasing number of cyber attacks. These attacks are carried out through requests that are considered normal or abnormal (attack requests). Therefore, an intrusion attack can be considered as a classification problem. Machine learning algorithms are used as a way to train models to classify these requests in order to increase the security of web systems. The data used to carry out the training and tests in this work come from the CSIC 2010 dataset. The J48, Naive Bayes, OneR, Random Forest and IBM Watson LGBM algorithms were tested. The metrics used were t-rate, precision, recall and f measure. The results showed that the algorithm used by the Watson tool (LGBM) was the one that did the best in all metrics when compared to the other algorithms in the literature. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-04-28T19:49:25Z 2022-04-28T19:49:25Z 2022-02-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/TLA.2022.9661457 IEEE Latin America Transactions, v. 20, n. 2, p. 191-197, 2022. 1548-0992 http://hdl.handle.net/11449/223218 10.1109/TLA.2022.9661457 2-s2.0-85122612051 |
url |
http://dx.doi.org/10.1109/TLA.2022.9661457 http://hdl.handle.net/11449/223218 |
identifier_str_mv |
IEEE Latin America Transactions, v. 20, n. 2, p. 191-197, 2022. 1548-0992 10.1109/TLA.2022.9661457 2-s2.0-85122612051 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
IEEE Latin America Transactions |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
191-197 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129448754544640 |