Pattern Analysis in Drilling Reports using Optimum-Path Forest

Detalhes bibliográficos
Autor(a) principal: Sousa, G. J. [UNESP]
Data de Publicação: 2018
Outros Autores: Pedronette, D. C.G. [UNESP], Baldassin, A. [UNESP], Privatto, P. I.M. [UNESP], Gaseta, M. [UNESP], Guilherme, I. R. [UNESP], Colombo, D., Afonso, L. C.S. [UNESP], Papa, J. P. [UNESP]
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/IJCNN.2018.8489232
http://hdl.handle.net/11449/187061
Resumo: Well drilling monitoring is an essential task to prevent faults, save resources, and take care of environmental and eco-planning businesses. During drilling, it is required that staff fill out a log to keep track of the activities that are currently occurring. With such data analyzed and processed, it is possible to learn how to prevent faults and take corrective actions in realtime. However, the most important information is usually stored in a free-text format, thus complicating the task of automated text mining. In this work, we introduce the Optimum-Path Forest (OPF) for sentence classification in drilling reports and compare its results against some state-of-art results. We show that OPF combined with text-based features are a compelling source to learn patterns in drilling reports.
id UNSP_5d12cc0655c23f197c04b52d409e9292
oai_identifier_str oai:repositorio.unesp.br:11449/187061
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Pattern Analysis in Drilling Reports using Optimum-Path ForestDrilling reportOptimum-Path ForestPetroleum EngineeringWell drilling monitoring is an essential task to prevent faults, save resources, and take care of environmental and eco-planning businesses. During drilling, it is required that staff fill out a log to keep track of the activities that are currently occurring. With such data analyzed and processed, it is possible to learn how to prevent faults and take corrective actions in realtime. However, the most important information is usually stored in a free-text format, thus complicating the task of automated text mining. In this work, we introduce the Optimum-Path Forest (OPF) for sentence classification in drilling reports and compare its results against some state-of-art results. We show that OPF combined with text-based features are a compelling source to learn patterns in drilling reports.Institute of Geosc. And Exact Sciences UNESP - São Paulo State UniversityCenpes Petróleo Brasileiro S.A. - PetrobrasSchool of Sciences UNESP - São Paulo State UniversityInstitute of Geosc. And Exact Sciences UNESP - São Paulo State UniversitySchool of Sciences UNESP - São Paulo State UniversityUniversidade Estadual Paulista (Unesp)Petróleo Brasileiro S.A. - PetrobrasSousa, G. J. [UNESP]Pedronette, D. C.G. [UNESP]Baldassin, A. [UNESP]Privatto, P. I.M. [UNESP]Gaseta, M. [UNESP]Guilherme, I. R. [UNESP]Colombo, D.Afonso, L. C.S. [UNESP]Papa, J. P. [UNESP]2019-10-06T15:24:16Z2019-10-06T15:24:16Z2018-10-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.1109/IJCNN.2018.8489232Proceedings of the International Joint Conference on Neural Networks, v. 2018-July.http://hdl.handle.net/11449/18706110.1109/IJCNN.2018.84892322-s2.0-85056558107Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings of the International Joint Conference on Neural Networksinfo:eu-repo/semantics/openAccess2021-10-23T19:02:08Zoai:repositorio.unesp.br:11449/187061Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:06:48.737062Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Pattern Analysis in Drilling Reports using Optimum-Path Forest
title Pattern Analysis in Drilling Reports using Optimum-Path Forest
spellingShingle Pattern Analysis in Drilling Reports using Optimum-Path Forest
Sousa, G. J. [UNESP]
Drilling report
Optimum-Path Forest
Petroleum Engineering
title_short Pattern Analysis in Drilling Reports using Optimum-Path Forest
title_full Pattern Analysis in Drilling Reports using Optimum-Path Forest
title_fullStr Pattern Analysis in Drilling Reports using Optimum-Path Forest
title_full_unstemmed Pattern Analysis in Drilling Reports using Optimum-Path Forest
title_sort Pattern Analysis in Drilling Reports using Optimum-Path Forest
author Sousa, G. J. [UNESP]
author_facet Sousa, G. J. [UNESP]
Pedronette, D. C.G. [UNESP]
Baldassin, A. [UNESP]
Privatto, P. I.M. [UNESP]
Gaseta, M. [UNESP]
Guilherme, I. R. [UNESP]
Colombo, D.
Afonso, L. C.S. [UNESP]
Papa, J. P. [UNESP]
author_role author
author2 Pedronette, D. C.G. [UNESP]
Baldassin, A. [UNESP]
Privatto, P. I.M. [UNESP]
Gaseta, M. [UNESP]
Guilherme, I. R. [UNESP]
Colombo, D.
Afonso, L. C.S. [UNESP]
Papa, J. P. [UNESP]
author2_role author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Petróleo Brasileiro S.A. - Petrobras
dc.contributor.author.fl_str_mv Sousa, G. J. [UNESP]
Pedronette, D. C.G. [UNESP]
Baldassin, A. [UNESP]
Privatto, P. I.M. [UNESP]
Gaseta, M. [UNESP]
Guilherme, I. R. [UNESP]
Colombo, D.
Afonso, L. C.S. [UNESP]
Papa, J. P. [UNESP]
dc.subject.por.fl_str_mv Drilling report
Optimum-Path Forest
Petroleum Engineering
topic Drilling report
Optimum-Path Forest
Petroleum Engineering
description Well drilling monitoring is an essential task to prevent faults, save resources, and take care of environmental and eco-planning businesses. During drilling, it is required that staff fill out a log to keep track of the activities that are currently occurring. With such data analyzed and processed, it is possible to learn how to prevent faults and take corrective actions in realtime. However, the most important information is usually stored in a free-text format, thus complicating the task of automated text mining. In this work, we introduce the Optimum-Path Forest (OPF) for sentence classification in drilling reports and compare its results against some state-of-art results. We show that OPF combined with text-based features are a compelling source to learn patterns in drilling reports.
publishDate 2018
dc.date.none.fl_str_mv 2018-10-10
2019-10-06T15:24:16Z
2019-10-06T15:24:16Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/IJCNN.2018.8489232
Proceedings of the International Joint Conference on Neural Networks, v. 2018-July.
http://hdl.handle.net/11449/187061
10.1109/IJCNN.2018.8489232
2-s2.0-85056558107
url http://dx.doi.org/10.1109/IJCNN.2018.8489232
http://hdl.handle.net/11449/187061
identifier_str_mv Proceedings of the International Joint Conference on Neural Networks, v. 2018-July.
10.1109/IJCNN.2018.8489232
2-s2.0-85056558107
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Proceedings of the International Joint Conference on Neural Networks
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128317193191424