Pattern Analysis in Drilling Reports using Optimum-Path Forest
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , , , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/IJCNN.2018.8489232 http://hdl.handle.net/11449/187061 |
Resumo: | Well drilling monitoring is an essential task to prevent faults, save resources, and take care of environmental and eco-planning businesses. During drilling, it is required that staff fill out a log to keep track of the activities that are currently occurring. With such data analyzed and processed, it is possible to learn how to prevent faults and take corrective actions in realtime. However, the most important information is usually stored in a free-text format, thus complicating the task of automated text mining. In this work, we introduce the Optimum-Path Forest (OPF) for sentence classification in drilling reports and compare its results against some state-of-art results. We show that OPF combined with text-based features are a compelling source to learn patterns in drilling reports. |
id |
UNSP_5d12cc0655c23f197c04b52d409e9292 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/187061 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Pattern Analysis in Drilling Reports using Optimum-Path ForestDrilling reportOptimum-Path ForestPetroleum EngineeringWell drilling monitoring is an essential task to prevent faults, save resources, and take care of environmental and eco-planning businesses. During drilling, it is required that staff fill out a log to keep track of the activities that are currently occurring. With such data analyzed and processed, it is possible to learn how to prevent faults and take corrective actions in realtime. However, the most important information is usually stored in a free-text format, thus complicating the task of automated text mining. In this work, we introduce the Optimum-Path Forest (OPF) for sentence classification in drilling reports and compare its results against some state-of-art results. We show that OPF combined with text-based features are a compelling source to learn patterns in drilling reports.Institute of Geosc. And Exact Sciences UNESP - São Paulo State UniversityCenpes Petróleo Brasileiro S.A. - PetrobrasSchool of Sciences UNESP - São Paulo State UniversityInstitute of Geosc. And Exact Sciences UNESP - São Paulo State UniversitySchool of Sciences UNESP - São Paulo State UniversityUniversidade Estadual Paulista (Unesp)Petróleo Brasileiro S.A. - PetrobrasSousa, G. J. [UNESP]Pedronette, D. C.G. [UNESP]Baldassin, A. [UNESP]Privatto, P. I.M. [UNESP]Gaseta, M. [UNESP]Guilherme, I. R. [UNESP]Colombo, D.Afonso, L. C.S. [UNESP]Papa, J. P. [UNESP]2019-10-06T15:24:16Z2019-10-06T15:24:16Z2018-10-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.1109/IJCNN.2018.8489232Proceedings of the International Joint Conference on Neural Networks, v. 2018-July.http://hdl.handle.net/11449/18706110.1109/IJCNN.2018.84892322-s2.0-85056558107Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings of the International Joint Conference on Neural Networksinfo:eu-repo/semantics/openAccess2021-10-23T19:02:08Zoai:repositorio.unesp.br:11449/187061Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:06:48.737062Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Pattern Analysis in Drilling Reports using Optimum-Path Forest |
title |
Pattern Analysis in Drilling Reports using Optimum-Path Forest |
spellingShingle |
Pattern Analysis in Drilling Reports using Optimum-Path Forest Sousa, G. J. [UNESP] Drilling report Optimum-Path Forest Petroleum Engineering |
title_short |
Pattern Analysis in Drilling Reports using Optimum-Path Forest |
title_full |
Pattern Analysis in Drilling Reports using Optimum-Path Forest |
title_fullStr |
Pattern Analysis in Drilling Reports using Optimum-Path Forest |
title_full_unstemmed |
Pattern Analysis in Drilling Reports using Optimum-Path Forest |
title_sort |
Pattern Analysis in Drilling Reports using Optimum-Path Forest |
author |
Sousa, G. J. [UNESP] |
author_facet |
Sousa, G. J. [UNESP] Pedronette, D. C.G. [UNESP] Baldassin, A. [UNESP] Privatto, P. I.M. [UNESP] Gaseta, M. [UNESP] Guilherme, I. R. [UNESP] Colombo, D. Afonso, L. C.S. [UNESP] Papa, J. P. [UNESP] |
author_role |
author |
author2 |
Pedronette, D. C.G. [UNESP] Baldassin, A. [UNESP] Privatto, P. I.M. [UNESP] Gaseta, M. [UNESP] Guilherme, I. R. [UNESP] Colombo, D. Afonso, L. C.S. [UNESP] Papa, J. P. [UNESP] |
author2_role |
author author author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Petróleo Brasileiro S.A. - Petrobras |
dc.contributor.author.fl_str_mv |
Sousa, G. J. [UNESP] Pedronette, D. C.G. [UNESP] Baldassin, A. [UNESP] Privatto, P. I.M. [UNESP] Gaseta, M. [UNESP] Guilherme, I. R. [UNESP] Colombo, D. Afonso, L. C.S. [UNESP] Papa, J. P. [UNESP] |
dc.subject.por.fl_str_mv |
Drilling report Optimum-Path Forest Petroleum Engineering |
topic |
Drilling report Optimum-Path Forest Petroleum Engineering |
description |
Well drilling monitoring is an essential task to prevent faults, save resources, and take care of environmental and eco-planning businesses. During drilling, it is required that staff fill out a log to keep track of the activities that are currently occurring. With such data analyzed and processed, it is possible to learn how to prevent faults and take corrective actions in realtime. However, the most important information is usually stored in a free-text format, thus complicating the task of automated text mining. In this work, we introduce the Optimum-Path Forest (OPF) for sentence classification in drilling reports and compare its results against some state-of-art results. We show that OPF combined with text-based features are a compelling source to learn patterns in drilling reports. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-10-10 2019-10-06T15:24:16Z 2019-10-06T15:24:16Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/IJCNN.2018.8489232 Proceedings of the International Joint Conference on Neural Networks, v. 2018-July. http://hdl.handle.net/11449/187061 10.1109/IJCNN.2018.8489232 2-s2.0-85056558107 |
url |
http://dx.doi.org/10.1109/IJCNN.2018.8489232 http://hdl.handle.net/11449/187061 |
identifier_str_mv |
Proceedings of the International Joint Conference on Neural Networks, v. 2018-July. 10.1109/IJCNN.2018.8489232 2-s2.0-85056558107 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Proceedings of the International Joint Conference on Neural Networks |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128317193191424 |