Classificação do grau de maturidade de morangos a partir de imagens usando classificadores supervisionados e redes convolucionais como extratoras de características
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | https://hdl.handle.net/11449/257511 |
Resumo: | Nos últimos anos, técnicas de Aprendizado de Máquina e Aprendizado Profundo têm sido aplicadas na pesquisa de morangos. Atualmente, identificar a maturidade dos morangos de forma eficiente e precisa é um desafio devido aos métodos tradicionais, que são baseadas na aparência ou composição química da fruta, serem caros e demorados. A classificação automática de morangos pode oferecer aos agricultores uma maneira mais precisa de avaliar a qualidade dos frutos. Este trabalho propõe a análise da eficiência de diferentes combinações de modelos supervisionados e Redes Neurais Convolucionais (CNNs) para classificar a maturidade dos morangos. Foram testadas 71 CNNs para extração de características das imagens, seguidas por uma redução de dimensionalidade com PCA e a aplicação de dez classificadores. Os melhores resultados foram obtidos com as CNNs da família ConvNeXt (ConvNeXtBase, ConvNeXtSmall e ConvNeXtTiny) e VGG (VGG16 e VGG19) em combinação com os classificadores Gradient Boosting, Histogram Based Gradient Boosting e SVM, alcançando acurácia acima de 72% e F1-Score acima de 78%. As combinações testadas demonstraram ser eficientes, proporcionando uma solução viável para a classificação precisa da maturidade dos morangos, potencialmente beneficiando os agricultores com uma ferramenta mais eficaz e menos custosa. |
id |
UNSP_5dcc280c951d29a5845c0e1c4acbb464 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/257511 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Classificação do grau de maturidade de morangos a partir de imagens usando classificadores supervisionados e redes convolucionais como extratoras de característicasClassification of strawberry ripeness from images using supervised classifiers and convolutional networks as feature extractorsAprendizado do computadorInteligência artificialMorangoRedes neurais (Computação)Artificial intelligenceMachine learningNeural networks (Computer science)StrawberriesNos últimos anos, técnicas de Aprendizado de Máquina e Aprendizado Profundo têm sido aplicadas na pesquisa de morangos. Atualmente, identificar a maturidade dos morangos de forma eficiente e precisa é um desafio devido aos métodos tradicionais, que são baseadas na aparência ou composição química da fruta, serem caros e demorados. A classificação automática de morangos pode oferecer aos agricultores uma maneira mais precisa de avaliar a qualidade dos frutos. Este trabalho propõe a análise da eficiência de diferentes combinações de modelos supervisionados e Redes Neurais Convolucionais (CNNs) para classificar a maturidade dos morangos. Foram testadas 71 CNNs para extração de características das imagens, seguidas por uma redução de dimensionalidade com PCA e a aplicação de dez classificadores. Os melhores resultados foram obtidos com as CNNs da família ConvNeXt (ConvNeXtBase, ConvNeXtSmall e ConvNeXtTiny) e VGG (VGG16 e VGG19) em combinação com os classificadores Gradient Boosting, Histogram Based Gradient Boosting e SVM, alcançando acurácia acima de 72% e F1-Score acima de 78%. As combinações testadas demonstraram ser eficientes, proporcionando uma solução viável para a classificação precisa da maturidade dos morangos, potencialmente beneficiando os agricultores com uma ferramenta mais eficaz e menos custosa.In recent years, Machine Learning and Deep Learning techniques have been applied to strawberry research. Currently, identifying the maturity of strawberries efficiently and accurately is a challenge due to traditional methods, which are based on the appearance or chemical composition of the fruit, being expensive and time-consuming. Automatic classification of strawberries can offer farmers a more precise way to assess the quality of the fruits. This study proposes analyzing the efficiency of different combinations of supervised models and Convolutional Neural Networks (CNNs) to classify strawberry maturity. Seventy-one CNNs were tested for image feature extraction, followed by dimensionality reduction with PCA and the application of ten classifiers. The best results were obtained with CNNs from the ConvNeXt family (ConvNeXtBase, ConvNeXtSmall, and ConvNeXtTiny) and VGG (VGG16 and VGG19) in combination with Gradient Boosting, Histogram Based Gradient Boosting and SVM classifiers, achieving accuracy above 72% and F1-Score above 78%. The tested combinations proved efficient, providing a viable solution for the accurate classification of strawberry maturity, potentially benefiting farmers with a more effective and less costly tool.Universidade Estadual Paulista (Unesp)Breve, Fabricio Aparecido [UNESP]Universidade Estadual Paulista (Unesp)Hamaguti, Érika Kayoko2024-09-23T20:23:25Z2024-09-23T20:23:25Z2024-07-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/11449/25751133004153073P2porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-09-24T11:27:58Zoai:repositorio.unesp.br:11449/257511Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-09-24T11:27:58Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Classificação do grau de maturidade de morangos a partir de imagens usando classificadores supervisionados e redes convolucionais como extratoras de características Classification of strawberry ripeness from images using supervised classifiers and convolutional networks as feature extractors |
title |
Classificação do grau de maturidade de morangos a partir de imagens usando classificadores supervisionados e redes convolucionais como extratoras de características |
spellingShingle |
Classificação do grau de maturidade de morangos a partir de imagens usando classificadores supervisionados e redes convolucionais como extratoras de características Hamaguti, Érika Kayoko Aprendizado do computador Inteligência artificial Morango Redes neurais (Computação) Artificial intelligence Machine learning Neural networks (Computer science) Strawberries |
title_short |
Classificação do grau de maturidade de morangos a partir de imagens usando classificadores supervisionados e redes convolucionais como extratoras de características |
title_full |
Classificação do grau de maturidade de morangos a partir de imagens usando classificadores supervisionados e redes convolucionais como extratoras de características |
title_fullStr |
Classificação do grau de maturidade de morangos a partir de imagens usando classificadores supervisionados e redes convolucionais como extratoras de características |
title_full_unstemmed |
Classificação do grau de maturidade de morangos a partir de imagens usando classificadores supervisionados e redes convolucionais como extratoras de características |
title_sort |
Classificação do grau de maturidade de morangos a partir de imagens usando classificadores supervisionados e redes convolucionais como extratoras de características |
author |
Hamaguti, Érika Kayoko |
author_facet |
Hamaguti, Érika Kayoko |
author_role |
author |
dc.contributor.none.fl_str_mv |
Breve, Fabricio Aparecido [UNESP] Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Hamaguti, Érika Kayoko |
dc.subject.por.fl_str_mv |
Aprendizado do computador Inteligência artificial Morango Redes neurais (Computação) Artificial intelligence Machine learning Neural networks (Computer science) Strawberries |
topic |
Aprendizado do computador Inteligência artificial Morango Redes neurais (Computação) Artificial intelligence Machine learning Neural networks (Computer science) Strawberries |
description |
Nos últimos anos, técnicas de Aprendizado de Máquina e Aprendizado Profundo têm sido aplicadas na pesquisa de morangos. Atualmente, identificar a maturidade dos morangos de forma eficiente e precisa é um desafio devido aos métodos tradicionais, que são baseadas na aparência ou composição química da fruta, serem caros e demorados. A classificação automática de morangos pode oferecer aos agricultores uma maneira mais precisa de avaliar a qualidade dos frutos. Este trabalho propõe a análise da eficiência de diferentes combinações de modelos supervisionados e Redes Neurais Convolucionais (CNNs) para classificar a maturidade dos morangos. Foram testadas 71 CNNs para extração de características das imagens, seguidas por uma redução de dimensionalidade com PCA e a aplicação de dez classificadores. Os melhores resultados foram obtidos com as CNNs da família ConvNeXt (ConvNeXtBase, ConvNeXtSmall e ConvNeXtTiny) e VGG (VGG16 e VGG19) em combinação com os classificadores Gradient Boosting, Histogram Based Gradient Boosting e SVM, alcançando acurácia acima de 72% e F1-Score acima de 78%. As combinações testadas demonstraram ser eficientes, proporcionando uma solução viável para a classificação precisa da maturidade dos morangos, potencialmente beneficiando os agricultores com uma ferramenta mais eficaz e menos custosa. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-09-23T20:23:25Z 2024-09-23T20:23:25Z 2024-07-29 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/11449/257511 33004153073P2 |
url |
https://hdl.handle.net/11449/257511 |
identifier_str_mv |
33004153073P2 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
publisher.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1813546414677950464 |