Simulating DNA chip design using all-electronic graphene-based substrates

Detalhes bibliográficos
Autor(a) principal: De Freitas Martins, Ernane [UNESP]
Data de Publicação: 2019
Outros Autores: Feliciano, Gustavo Troiano [UNESP], Scheicher, Ralph Hendrik, Rocha, Alexandre Reily [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.3390/molecules24050951
http://hdl.handle.net/11449/188837
Resumo: In this paper, we present a theoretical investigation of an all-electronic biochip based on graphene to detect DNA including a full dynamical treatment for the environment. Our proposed device design is based on the changes in the electronic transport properties of graphene interacting with DNA strands under the effect of the solvent. To investigate these systems, we applied a hybrid methodology, combining quantum and classical mechanics (QM/MM) coupled to non-equilibrium Green’s functions, allowing for the calculations of electronic transport. Our results show that the proposed device has high sensitivity towards the presence of DNA, and, combined with the presence of a specific DNA probe in the form of a single-strand, it presents good selectivity towards specific nucleotide sequences.
id UNSP_5f0f2c5a413a4198d2fd304c4e060747
oai_identifier_str oai:repositorio.unesp.br:11449/188837
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Simulating DNA chip design using all-electronic graphene-based substratesDNA chipGrapheneNon-equilibrium Green’s functionsQM/MMIn this paper, we present a theoretical investigation of an all-electronic biochip based on graphene to detect DNA including a full dynamical treatment for the environment. Our proposed device design is based on the changes in the electronic transport properties of graphene interacting with DNA strands under the effect of the solvent. To investigate these systems, we applied a hybrid methodology, combining quantum and classical mechanics (QM/MM) coupled to non-equilibrium Green’s functions, allowing for the calculations of electronic transport. Our results show that the proposed device has high sensitivity towards the presence of DNA, and, combined with the presence of a specific DNA probe in the form of a single-strand, it presents good selectivity towards specific nucleotide sequences.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)National Physical LaboratoryInstitute of Theoretical Physics São Paulo State University (UNESP) Campus São PauloDivision of Materials Theory Department of Physics and Astronomy Uppsala UniversityInstitute of Chemistry São Paulo State University (UNESP) Campus AraraquaraInstitute of Theoretical Physics São Paulo State University (UNESP) Campus São PauloInstitute of Chemistry São Paulo State University (UNESP) Campus AraraquaraFAPESP: # 2017/FAPESP: 2011/11973-4Universidade Estadual Paulista (Unesp)Uppsala UniversityDe Freitas Martins, Ernane [UNESP]Feliciano, Gustavo Troiano [UNESP]Scheicher, Ralph HendrikRocha, Alexandre Reily [UNESP]2019-10-06T16:20:45Z2019-10-06T16:20:45Z2019-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.3390/molecules24050951Molecules, v. 24, n. 5, 2019.1420-3049http://hdl.handle.net/11449/18883710.3390/molecules240509512-s2.0-85062873856Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengMoleculesinfo:eu-repo/semantics/openAccess2021-10-23T19:02:20Zoai:repositorio.unesp.br:11449/188837Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462021-10-23T19:02:20Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Simulating DNA chip design using all-electronic graphene-based substrates
title Simulating DNA chip design using all-electronic graphene-based substrates
spellingShingle Simulating DNA chip design using all-electronic graphene-based substrates
De Freitas Martins, Ernane [UNESP]
DNA chip
Graphene
Non-equilibrium Green’s functions
QM/MM
title_short Simulating DNA chip design using all-electronic graphene-based substrates
title_full Simulating DNA chip design using all-electronic graphene-based substrates
title_fullStr Simulating DNA chip design using all-electronic graphene-based substrates
title_full_unstemmed Simulating DNA chip design using all-electronic graphene-based substrates
title_sort Simulating DNA chip design using all-electronic graphene-based substrates
author De Freitas Martins, Ernane [UNESP]
author_facet De Freitas Martins, Ernane [UNESP]
Feliciano, Gustavo Troiano [UNESP]
Scheicher, Ralph Hendrik
Rocha, Alexandre Reily [UNESP]
author_role author
author2 Feliciano, Gustavo Troiano [UNESP]
Scheicher, Ralph Hendrik
Rocha, Alexandre Reily [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Uppsala University
dc.contributor.author.fl_str_mv De Freitas Martins, Ernane [UNESP]
Feliciano, Gustavo Troiano [UNESP]
Scheicher, Ralph Hendrik
Rocha, Alexandre Reily [UNESP]
dc.subject.por.fl_str_mv DNA chip
Graphene
Non-equilibrium Green’s functions
QM/MM
topic DNA chip
Graphene
Non-equilibrium Green’s functions
QM/MM
description In this paper, we present a theoretical investigation of an all-electronic biochip based on graphene to detect DNA including a full dynamical treatment for the environment. Our proposed device design is based on the changes in the electronic transport properties of graphene interacting with DNA strands under the effect of the solvent. To investigate these systems, we applied a hybrid methodology, combining quantum and classical mechanics (QM/MM) coupled to non-equilibrium Green’s functions, allowing for the calculations of electronic transport. Our results show that the proposed device has high sensitivity towards the presence of DNA, and, combined with the presence of a specific DNA probe in the form of a single-strand, it presents good selectivity towards specific nucleotide sequences.
publishDate 2019
dc.date.none.fl_str_mv 2019-10-06T16:20:45Z
2019-10-06T16:20:45Z
2019-01-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.3390/molecules24050951
Molecules, v. 24, n. 5, 2019.
1420-3049
http://hdl.handle.net/11449/188837
10.3390/molecules24050951
2-s2.0-85062873856
url http://dx.doi.org/10.3390/molecules24050951
http://hdl.handle.net/11449/188837
identifier_str_mv Molecules, v. 24, n. 5, 2019.
1420-3049
10.3390/molecules24050951
2-s2.0-85062873856
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Molecules
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1799964575169249280