Simulating DNA chip design using all-electronic graphene-based substrates
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.3390/molecules24050951 http://hdl.handle.net/11449/188837 |
Resumo: | In this paper, we present a theoretical investigation of an all-electronic biochip based on graphene to detect DNA including a full dynamical treatment for the environment. Our proposed device design is based on the changes in the electronic transport properties of graphene interacting with DNA strands under the effect of the solvent. To investigate these systems, we applied a hybrid methodology, combining quantum and classical mechanics (QM/MM) coupled to non-equilibrium Green’s functions, allowing for the calculations of electronic transport. Our results show that the proposed device has high sensitivity towards the presence of DNA, and, combined with the presence of a specific DNA probe in the form of a single-strand, it presents good selectivity towards specific nucleotide sequences. |
id |
UNSP_5f0f2c5a413a4198d2fd304c4e060747 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/188837 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Simulating DNA chip design using all-electronic graphene-based substratesDNA chipGrapheneNon-equilibrium Green’s functionsQM/MMIn this paper, we present a theoretical investigation of an all-electronic biochip based on graphene to detect DNA including a full dynamical treatment for the environment. Our proposed device design is based on the changes in the electronic transport properties of graphene interacting with DNA strands under the effect of the solvent. To investigate these systems, we applied a hybrid methodology, combining quantum and classical mechanics (QM/MM) coupled to non-equilibrium Green’s functions, allowing for the calculations of electronic transport. Our results show that the proposed device has high sensitivity towards the presence of DNA, and, combined with the presence of a specific DNA probe in the form of a single-strand, it presents good selectivity towards specific nucleotide sequences.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)National Physical LaboratoryInstitute of Theoretical Physics São Paulo State University (UNESP) Campus São PauloDivision of Materials Theory Department of Physics and Astronomy Uppsala UniversityInstitute of Chemistry São Paulo State University (UNESP) Campus AraraquaraInstitute of Theoretical Physics São Paulo State University (UNESP) Campus São PauloInstitute of Chemistry São Paulo State University (UNESP) Campus AraraquaraFAPESP: # 2017/FAPESP: 2011/11973-4Universidade Estadual Paulista (Unesp)Uppsala UniversityDe Freitas Martins, Ernane [UNESP]Feliciano, Gustavo Troiano [UNESP]Scheicher, Ralph HendrikRocha, Alexandre Reily [UNESP]2019-10-06T16:20:45Z2019-10-06T16:20:45Z2019-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.3390/molecules24050951Molecules, v. 24, n. 5, 2019.1420-3049http://hdl.handle.net/11449/18883710.3390/molecules240509512-s2.0-85062873856Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengMoleculesinfo:eu-repo/semantics/openAccess2021-10-23T19:02:20Zoai:repositorio.unesp.br:11449/188837Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:01:49.204631Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Simulating DNA chip design using all-electronic graphene-based substrates |
title |
Simulating DNA chip design using all-electronic graphene-based substrates |
spellingShingle |
Simulating DNA chip design using all-electronic graphene-based substrates De Freitas Martins, Ernane [UNESP] DNA chip Graphene Non-equilibrium Green’s functions QM/MM |
title_short |
Simulating DNA chip design using all-electronic graphene-based substrates |
title_full |
Simulating DNA chip design using all-electronic graphene-based substrates |
title_fullStr |
Simulating DNA chip design using all-electronic graphene-based substrates |
title_full_unstemmed |
Simulating DNA chip design using all-electronic graphene-based substrates |
title_sort |
Simulating DNA chip design using all-electronic graphene-based substrates |
author |
De Freitas Martins, Ernane [UNESP] |
author_facet |
De Freitas Martins, Ernane [UNESP] Feliciano, Gustavo Troiano [UNESP] Scheicher, Ralph Hendrik Rocha, Alexandre Reily [UNESP] |
author_role |
author |
author2 |
Feliciano, Gustavo Troiano [UNESP] Scheicher, Ralph Hendrik Rocha, Alexandre Reily [UNESP] |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Uppsala University |
dc.contributor.author.fl_str_mv |
De Freitas Martins, Ernane [UNESP] Feliciano, Gustavo Troiano [UNESP] Scheicher, Ralph Hendrik Rocha, Alexandre Reily [UNESP] |
dc.subject.por.fl_str_mv |
DNA chip Graphene Non-equilibrium Green’s functions QM/MM |
topic |
DNA chip Graphene Non-equilibrium Green’s functions QM/MM |
description |
In this paper, we present a theoretical investigation of an all-electronic biochip based on graphene to detect DNA including a full dynamical treatment for the environment. Our proposed device design is based on the changes in the electronic transport properties of graphene interacting with DNA strands under the effect of the solvent. To investigate these systems, we applied a hybrid methodology, combining quantum and classical mechanics (QM/MM) coupled to non-equilibrium Green’s functions, allowing for the calculations of electronic transport. Our results show that the proposed device has high sensitivity towards the presence of DNA, and, combined with the presence of a specific DNA probe in the form of a single-strand, it presents good selectivity towards specific nucleotide sequences. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10-06T16:20:45Z 2019-10-06T16:20:45Z 2019-01-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.3390/molecules24050951 Molecules, v. 24, n. 5, 2019. 1420-3049 http://hdl.handle.net/11449/188837 10.3390/molecules24050951 2-s2.0-85062873856 |
url |
http://dx.doi.org/10.3390/molecules24050951 http://hdl.handle.net/11449/188837 |
identifier_str_mv |
Molecules, v. 24, n. 5, 2019. 1420-3049 10.3390/molecules24050951 2-s2.0-85062873856 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Molecules |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128449876852736 |